期刊文献+
共找到205,288篇文章
< 1 2 250 >
每页显示 20 50 100
Acquired sensorineural hearing loss,oxidative stress,and microRNAs
1
作者 Desmond A.Nunez Ru C.Guo 《Neural Regeneration Research》 SCIE CAS 2025年第9期2513-2519,共7页
Hearing loss is the third leading cause of human disability.Age-related hearing loss,one type of acquired sensorineural hearing loss,is largely responsible for this escalating global health burden.Noise-induced,ototox... Hearing loss is the third leading cause of human disability.Age-related hearing loss,one type of acquired sensorineural hearing loss,is largely responsible for this escalating global health burden.Noise-induced,ototoxic,and idiopathic sudden sensorineural are other less common types of acquired hearing loss.The etiology of these conditions is complex and multi-fa ctorial involving an interplay of genetic and environmental factors.Oxidative stress has recently been proposed as a likely linking cause in most types of acquired sensorineural hearing loss.Short non-coding RNA sequences known as microRNAs(miRNAs)have increasingly been shown to play a role in cellular hypoxia and oxidative stress responses including promoting an apoptotic response.Sensory hair cell death is a central histopathological finding in sensorineural hearing loss.As these cells do not regenerate in humans,it underlies the irreversibility of human age-related hearing loss.Ovid EMBASE,Ovid MEDLINE,Web of Science Core Collection,and ClinicalTrials.gov databases over the period August 1,2018 to July 31,2023 were searched with"hearing loss,""hypoxamiRs,""hypoxia,""microRNAs,""ischemia,"and"oxidative stress"text words for English language primary study publications or registered clinical trials.Registe red clinical trials known to the senior author we re also assessed.A total of 222studies were thus identified.After excluding duplicates,editorials,retra ctions,secondary research studies,and non-English language articles,39 primary studies and clinical trials underwent full-text screening.This resulted in 11 animal,in vitro,and/or human subject journal articles and 8 registered clinical trial database entries which form the basis of this narrative review.MiRNAs miR-34a and miR-29b levels increase with age in mice.These miRNAs were demonstrated in human neuroblastoma and murine cochlear cell lines to target Sirtuin 1/peroxisome proliferato r-activated receptor gamma coactivator-1-alpha(SIRT1/P GC-1α),SIRT1p53,and SIRT1/hypoxia-inducible factor 1-alpha signaling pathways resulting in increased apoptosis.Furthermore,hypoxia and oxidative stress had a similar adve rse apoptotic effect,which was inhibited by resve ratrol and a myocardial inhibitorassociated transcript,a miR-29b competing endogenous mRNA.Gentamicin reduced miR-182-5p levels and increased cochlear oxidative stress and cell death in mice-an effect that was corrected by inner ear stem cell-derived exosomes.There is ongoing work seeking to determine if these findings can be effectively translated to humans. 展开更多
关键词 hearing loss HYPOXIA MICRORNAS oxidative stress SENSORINEURAL
下载PDF
Targeting sepsis through inflammation and oxidative metabolism
2
作者 Salena Jacob Sanjana Ann Jacob Joby Thoppil 《World Journal of Critical Care Medicine》 2025年第1期69-81,共13页
Infection is a public health problem and represents a spectrum of disease that can result in sepsis and septic shock.Sepsis is characterized by a dysregulated immune response to infection.Septic shock is the most seve... Infection is a public health problem and represents a spectrum of disease that can result in sepsis and septic shock.Sepsis is characterized by a dysregulated immune response to infection.Septic shock is the most severe form of sepsis which leads to distributive shock and high mortality rates.There have been significant advances in sepsis management mainly focusing on early identification and therapy.However,complicating matters is the lack of reliable diagnostic tools and the poor specificity and sensitivity of existing scoring tools i.e.,systemic inflammatory response syndrome criteria,sequential organ failure assessment(SOFA),or quick SOFA.These limitations have underscored the modest progress in reducing sepsis-related mortality.This review will focus on novel therapeutics such as oxidative stress targets,cytokine modulation,endothelial cell modulation,etc.,that are being conceptualized for the management of sepsis and septic shock. 展开更多
关键词 SEPSIS INFLAMMATION oxidative Metabolism INFECTION Reactive oxygen species
下载PDF
Diabetes mellitus and glymphatic dysfunction:Roles for oxidative stress,mitochondria,circadian rhythm,artificial intelligence,and imaging
3
作者 Kenneth Maiese 《World Journal of Diabetes》 SCIE 2025年第1期39-48,共10页
Diabetes mellitus(DM)is a debilitating disorder that impacts all systems of the body and has been increasing in prevalence throughout the globe.DM represents a significant clinical challenge to care for individuals an... Diabetes mellitus(DM)is a debilitating disorder that impacts all systems of the body and has been increasing in prevalence throughout the globe.DM represents a significant clinical challenge to care for individuals and prevent the onset of chronic disability and ultimately death.Underlying cellular mechanisms for the onset and development of DM are multi-factorial in origin and involve pathways associated with the production of reactive oxygen species and the generation of oxidative stress as well as the dysfunction of mitochondrial cellular organelles,programmed cell death,and circadian rhythm impairments.These pathways can ultimately involve failure in the glymphatic pathway of the brain that is linked to circadian rhythms disorders during the loss of metabolic homeostasis.New studies incorporate a number of promising techniques to examine patients with metabolic disorders that can include machine learning and artificial intelligence pathways to potentially predict the onset of metabolic dysfunction. 展开更多
关键词 Artificial intelligence Circadian rhythm Clock genes Diabetes mellitus magnetic resonance imaging Glymphatic pathway MITOCHONDRIA oxidative stress Programmed cell death Sleep fragmentation
下载PDF
Hydrogen sulfide reduces oxidative stress in Huntington's disease via Nrf2
4
作者 Zige Jiang Dexiang Liu +7 位作者 Tingting Li Chengcheng Gai Danqing Xin Yijing Zhao Yan Song Yahong Cheng Tong Li Zhen Wang 《Neural Regeneration Research》 SCIE CAS 2025年第6期1776-1788,共13页
The pathophysiology of Huntington's disease involves high levels of the neurotoxin quinolinic acid. Quinolinic acid accumulation results in oxidative stress, which leads to neurotoxicity. However, the molecular an... The pathophysiology of Huntington's disease involves high levels of the neurotoxin quinolinic acid. Quinolinic acid accumulation results in oxidative stress, which leads to neurotoxicity. However, the molecular and cellular mechanisms by which quinolinic acid contributes to Huntington's disease pathology remain unknown. In this study, we established in vitro and in vivo models of Huntington's disease by administering quinolinic acid to the PC12 neuronal cell line and the striatum of mice, respectively. We observed a decrease in the levels of hydrogen sulfide in both PC12 cells and mouse serum, which was accompanied by down-regulation of cystathionine β-synthase, an enzyme responsible for hydrogen sulfide production. However, treatment with NaHS(a hydrogen sulfide donor) increased hydrogen sulfide levels in the neurons and in mouse serum, as well as cystathionine β-synthase expression in the neurons and the mouse striatum, while also improving oxidative imbalance and mitochondrial dysfunction in PC12 cells and the mouse striatum. These beneficial effects correlated with upregulation of nuclear factor erythroid 2-related factor 2 expression. Finally, treatment with the nuclear factor erythroid 2-related factor 2inhibitor ML385 reversed the beneficial impact of exogenous hydrogen sulfide on quinolinic acid-induced oxidative stress. Taken together, our findings show that hydrogen sulfide reduces oxidative stress in Huntington's disease by activating nuclear factor erythroid 2-related factor 2,suggesting that hydrogen sulfide is a novel neuroprotective drug candidate for treating patients with Huntington's disease. 展开更多
关键词 apoptosis CYSTATHIONINE-Β-SYNTHASE nuclear factor erythroid 2-related factor 2 Huntington's disease hydrogen sulfide MITOCHONDRION NEUROPLASTICITY oxidative stress quinolinic acid reactive oxygen species
下载PDF
New Azomethine Compounds on the Basis <i>m</i>-Phenylenediamine and Substituted Benzaldehydes Capable of Oxidative Polymerization 被引量:1
5
作者 T. A. Borukaev A. M. Mazloeva +3 位作者 R. M. R. M. Otarova Yu. A. Malkanduev A. Kh. Malamatov A. V. Orlov 《Open Journal of Polymer Chemistry》 2018年第2期34-39,共6页
Low-temperature condensation of m-phenylene diamine and various aromatic aldehydes (benzaldehyde, m-, o-nitrobenzaldehyde, p-diethylaminobenzaldehyde, o-, p-hydroxybenzaldehyde and 4-hydroxy-3,5-ditert-butylbenzaldehy... Low-temperature condensation of m-phenylene diamine and various aromatic aldehydes (benzaldehyde, m-, o-nitrobenzaldehyde, p-diethylaminobenzaldehyde, o-, p-hydroxybenzaldehyde and 4-hydroxy-3,5-ditert-butylbenzaldehyde) in the ethyl alcohol medium synthesized new azomethine compounds. With the help of spectral methods and elemental analysis, the structure of the azomethine compounds obtained was confirmed. It was founded that irradiation of azomethine compounds with UV light at a wavelength of 300 - 330 nm results in their emission. The luminescent properties of the resulting compounds are due to the presence of chromophore azomethine groups in the molecule structure. In particular, the π-electrons of the azomethine bonds can undergo irradiation to a different energy levels, accompanied by fluorescence. It was shown that synthesized azomethine compounds are capable of oxidative polymerization. Based on azomethine compounds in hydrochloric acid solution synthesized polymers with conjugated bonds, which had low molecular-mass characteristics. It is shown that the oxidative polymerization of azomethines proceeds through a slow (one-electron transfer) and rapid (recombination of the radical cations) stage. 展开更多
关键词 AZOMETHINE COMPOUNDS Synthesis Luminescence oxidative polymerization
下载PDF
Hydroxyl radicals-mediated oxidative cleavage of the glycosidic bond in cellobiose by copper catalysts and its application to low-temperature depolymerization of cellulose 被引量:6
6
作者 Fangwei Gu Haichao Liu 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2020年第7期1073-1080,共8页
As the most abundant source of biomass in nature for sustainable production of fuels and chemicals,efficient depolymerization of cellulose under mild conditions,due to the difficulty in selective cleavage of itsβ-1,4... As the most abundant source of biomass in nature for sustainable production of fuels and chemicals,efficient depolymerization of cellulose under mild conditions,due to the difficulty in selective cleavage of itsβ-1,4-glycosidic bonds,still remains challenging.Here,we report a novel method for oxidative cleavage of the glycosidic bonds by free radicals.Probed by the cellobiose reaction,it was found that·OH radicals,generated from the decomposition of H2O2 catalyzed by CuSO4 or CuO/SiO2,were efficient for selective conversion of cellobiose to glucose and gluconic acid at a low temperature of 333 K,and their selectivities reached 30.0%and 34.6%,respectively,at 23.4%cellobiose conversion.Other radicals,such as·SO4?,also exhibited high efficacy in the cellobiose reaction.Mechanistic studies suggest that the oxidative cleavage of theβ-1,4-glycosidic bond by the free radicals involve formation of the carbon radical intermediate via abstraction of the H atom dominantly at the C1 position.Following this oxidative mechanism,treatment of microcrystalline cellulose with·OH by impregnation with H2O2 and CuSO4 catalyst at 343 K led to significant enhancement in its hydrolysis efficiency.These results demonstrate the effectiveness of this new method in the oxidative cleavage of glycosidic bonds,and its viability for the efficient depolymerization of cellulose at low temperatures,which can be further improved,for example,by exploring new free radicals and optimizing their reactivity and selectivity. 展开更多
关键词 Cellulose depolymerization CELLOBIOSE Hydroxyl radical oxidative cleavage Glycosidic bond
下载PDF
OXIDATIVE POLYMERIZATION BEHAVIOR OF 2,6-DIMETHYLPHENOL IN AQUEOUS MEDIA WITH POTASSIUM FERRICYANIDE
7
作者 申屠宝卿 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2009年第4期543-549,共7页
The effects of potassium ferricyanide,sodium n-dodecyl sulfate,sodium hydroxide and temperature on the molecular weight and the yield of poly(2,6-dimethyl-1,4-phenylene oxide)(PPO) synthesized in an aqueous medium wer... The effects of potassium ferricyanide,sodium n-dodecyl sulfate,sodium hydroxide and temperature on the molecular weight and the yield of poly(2,6-dimethyl-1,4-phenylene oxide)(PPO) synthesized in an aqueous medium were studied.It was found that oxygen in air had little influence on the oxidative polymerization of 2,6-dimethylphenol(DMP) in the aqueous medium,and potassium ferricyanide was only an oxidant during the oxidative polymerization of DMP.Sodium n-dodecyl sulfate could stabilize polymer particles an... 展开更多
关键词 2 6-Dimethylphenol(DMP) oxidative polymerization Poly(2 6-dimethyl-l 4-phenylene oxide)(PPO) Aqueous medium
下载PDF
Emitting stability of poly(9,9-dialkylfluorene-co-N-butylcarbazole) by solid-state oxidative coupling polymerization
8
作者 Wei Bin Bai Zhi Yuan Chen Cai Mao Zhan 《Chinese Chemical Letters》 SCIE CAS CSCD 2007年第1期76-78,共3页
Dihexylfluorene and N-butylcarbazole were copolymerized by solid-state oxidative coupling polymerization in the presence of anhydrous FeCl3 at room temperature. The solid-state films of the copolymers emitted blue lig... Dihexylfluorene and N-butylcarbazole were copolymerized by solid-state oxidative coupling polymerization in the presence of anhydrous FeCl3 at room temperature. The solid-state films of the copolymers emitted blue light after beating at 150 ℃ in air for 24 h, no red-shifted emission was observed by fluorescence spectroscopy. 展开更多
关键词 Solid-state oxidative coupling polymerization Fluorene-carbazole copolymer Emitting stability Photoluminescence
下载PDF
Green Light-Emitting Region-Regular Poly(9,9-Dihexylfluorene-co-Fluorenone) Prepared from Solvent-Free Oxidative Coupling Polymerization
9
作者 ZHAN Caimao CHEN Zhiyuan BAI Weibin YANG Xi 《Wuhan University Journal of Natural Sciences》 CAS 2007年第2期327-332,共6页
Soluble green light-emitting poly(9,9-dihexylfluorene- co-fluorenone) was synthesized by solvent-free oxidative coupling polymerization of 9,9-dihexylfluorene in a facile one-step reaction. The polymers were charact... Soluble green light-emitting poly(9,9-dihexylfluorene- co-fluorenone) was synthesized by solvent-free oxidative coupling polymerization of 9,9-dihexylfluorene in a facile one-step reaction. The polymers were characterized by FT-IR, ^1H NMR, ^13C NMR, UV-Vis and fluorescence spectroscopy. The region-regular structure of the polymer linking at 2, 7'-position on the fluorene moieties was obtained. The FT-IR spectra of the polymers showed fluorenone vibration. The fluorescence spectra of the solid thin film of the polymers displayed green light-emitting, which was emitted from fluorenone moieties produced in the polymerization process. 展开更多
关键词 solvent-free oxidative coupling polymerization poly(9 9-dihexylfluorene-co-fluorenone) green light-emitting
下载PDF
Oxidative coupling polymerization of p-alkoxyphenols with Mn(acac)2-ethylenediamine catalysts
10
作者 Soichiro Murakami Yuuta Akutsu +2 位作者 Shigeki Habaue Osamu Haba Hideyuki Higashimura 《Natural Science》 2010年第8期803-808,共6页
The oxidative coupling polymerization of p alkoxyphenols with Mn(acac)2ethylenediamine catalysts was carried out. The polymerization of pmethoxyphenol with the manganese(II) acetylacetonate [Mn(acac)2]N,N’diethylethy... The oxidative coupling polymerization of p alkoxyphenols with Mn(acac)2ethylenediamine catalysts was carried out. The polymerization of pmethoxyphenol with the manganese(II) acetylacetonate [Mn(acac)2]N,N’diethylethylene diamine catalyst in CH2Cl2 at room temperature under an O2 atmosphere afforded a polymer, which mainly consists of the mphenylene unit, whereas the polymer obtained with Mn(acac)2 was rich in the oxyphenylene structure. The polymer yield and regioselectivity were significantly affected by the monomer and catalyst structures. The former catalyst system was also used for the coupling reaction of 2methoxy 4methylphenol. The corresponding carboncar bon coupling product was isolated with a regioselectivity of 95%. 展开更多
关键词 oxidative Coupling polymerization PHENOL POLYPHENYLENE MANGANESE Catalyst Regioselectivity
下载PDF
Oxidative Polymerization of N-Phenylanthranilic Acid in the Heterophase System
11
作者 S. Zh. Ozkan I. S. Eremeev +1 位作者 G. P. Karpacheva G. N. Bondarenko 《Open Journal of Polymer Chemistry》 2013年第3期63-69,共7页
Polymers of N-phenylanthranilic acid were obtained by oxidative polymerization in the heterophase system in the presence of chloroform. Effect of synthesis conditions on the chemical structure of the polymers was stud... Polymers of N-phenylanthranilic acid were obtained by oxidative polymerization in the heterophase system in the presence of chloroform. Effect of synthesis conditions on the chemical structure of the polymers was studied. It was found that the growth of polymeric chain occurs via C-C joining into 2- and 4-positions of phenyl rings with respect to nitrogen. Thermal stability of poly-N-phenylanthranilic acid was studied. 展开更多
关键词 oxidative polymerization Poly-N-phenylanthranilic ACID Chemical Structure
下载PDF
Synergistic catalysis of the N-hydroxyphthalimide on flower-like bimetallic metal-organic frameworks for boosting oxidative desulfurization 被引量:1
12
作者 Jing He Kun Zhu +5 位作者 Wei Jiang Dong-Ao Zhu Lin-Hua Zhu Hai-Yan Huang Wen-Shuai Zhu Hua-Ming Li 《Petroleum Science》 SCIE EI CAS CSCD 2024年第1期674-682,共9页
Synergic catalytic effect between active sites and supports greatly determines the catalytic activity for the aerobic oxidative desulfurization of fuel oils.In this work,Ni-doped Co-based bimetallic metal-organic fram... Synergic catalytic effect between active sites and supports greatly determines the catalytic activity for the aerobic oxidative desulfurization of fuel oils.In this work,Ni-doped Co-based bimetallic metal-organic framework(CoNi-MOF)is fabricated to disperse N-hydroxyphthalimide(NHPI),in which the whole catalyst provides plentiful synergic catalytic effect to improve the performance of oxidative desulfurization(ODS).As a bimetallic MOF,the second metal Ni doping results in the flower-like morphology and the modification of electronic properties,which ensure the exposure of NHPI and strengthen the synergistic effect of the overall catalyst.Compared with the monometallic Co-MOF and naked NHPI,the NHPI@CoNi-MOF triggers the efficient activation of molecular oxygen and improves the ODS performance without an initiator.The sulfur removal of dibenzothiophene-based model oil reaches 96.4%over the NHPI@CoNi-MOF catalyst in 8 h of reaction.Furthermore,the catalytic product of this aerobic ODS reaction is sulfone,which is adsorbed on the catalyst surface due to the difference in polarity.This work provides new insight and strategy for the design of a strong synergic catalytic effect between NHPI and bimetallic supports toward high-activity aerobic ODS materials. 展开更多
关键词 Metal-organic frameworks DOPED BIMETALLIC N-HYDROXYPHTHALIMIDE Aerobic processes oxidative desulfurization
下载PDF
Two-photon polymerization lithography for imaging optics 被引量:1
13
作者 Hao Wang Cheng-Feng Pan +16 位作者 Chi Li Kishan S Menghrajani Markus A Schmidt Aoling Li Fu Fan Yu Zhou Wang Zhang Hongtao Wang Parvathi Nair Suseela Nair John You En Chan Tomohiro Mori Yueqiang Hu Guangwei Hu Stefan A Maier Haoran Ren Huigao Duan Joel K W Yang 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2024年第4期21-60,共40页
Optical imaging systems have greatly extended human visual capabilities,enabling the observation and understanding of diverse phenomena.Imaging technologies span a broad spectrum of wavelengths from x-ray to radio fre... Optical imaging systems have greatly extended human visual capabilities,enabling the observation and understanding of diverse phenomena.Imaging technologies span a broad spectrum of wavelengths from x-ray to radio frequencies and impact research activities and our daily lives.Traditional glass lenses are fabricated through a series of complex processes,while polymers offer versatility and ease of production.However,modern applications often require complex lens assemblies,driving the need for miniaturization and advanced designs with micro-and nanoscale features to surpass the capabilities of traditional fabrication methods.Three-dimensional(3D)printing,or additive manufacturing,presents a solution to these challenges with benefits of rapid prototyping,customized geometries,and efficient production,particularly suited for miniaturized optical imaging devices.Various 3D printing methods have demonstrated advantages over traditional counterparts,yet challenges remain in achieving nanoscale resolutions.Two-photon polymerization lithography(TPL),a nanoscale 3D printing technique,enables the fabrication of intricate structures beyond the optical diffraction limit via the nonlinear process of two-photon absorption within liquid resin.It offers unprecedented abilities,e.g.alignment-free fabrication,micro-and nanoscale capabilities,and rapid prototyping of almost arbitrary complex 3D nanostructures.In this review,we emphasize the importance of the criteria for optical performance evaluation of imaging devices,discuss material properties relevant to TPL,fabrication techniques,and highlight the application of TPL in optical imaging.As the first panoramic review on this topic,it will equip researchers with foundational knowledge and recent advancements of TPL for imaging optics,promoting a deeper understanding of the field.By leveraging on its high-resolution capability,extensive material range,and true 3D processing,alongside advances in materials,fabrication,and design,we envisage disruptive solutions to current challenges and a promising incorporation of TPL in future optical imaging applications. 展开更多
关键词 two-photon polymerization lithography 3D printing additive manufacturing IMAGING optics and nanophotonics
下载PDF
Effects of Tongluo Jiedu prescription on immune function and oxidative stress in patients with oral cancer 被引量:2
14
作者 Yue Yin Yuan Yao +2 位作者 Yi-Jie Li Li-Li Zhao Qiang Zhang 《World Journal of Clinical Cases》 SCIE 2024年第17期3045-3052,共8页
BACKGROUND Oral cancer,which is caused by mucous membrane variation,represents a prevalent malignant tumor in the oral and maxillofacial region,posing a significant threat to patients’lives and safety.While surgical ... BACKGROUND Oral cancer,which is caused by mucous membrane variation,represents a prevalent malignant tumor in the oral and maxillofacial region,posing a significant threat to patients’lives and safety.While surgical intervention stands as a cornerstone treatment for oral cancer patients,it carries the risk of incomplete treatment or high rates of postoperative recurrence.Hence,a multifaceted approach incorporating diverse treatment modalities is essential to enhance patient prognosis.AIM To analyze the application effect of Tongluo Jiedu prescription as adjuvant therapy and its influence on patient prognosis in patients with oral cancer.METHODS Eighty oral cancer patients in our hospital were selected and divided into the observation group and control group by a random number table.The control group was treated with continuous arterial infusion chemotherapy of cisplatin and 5-fluorouracil.The observation group was additionally given Tongluo Jiadu prescription.The inflammatory stress level,peripheral blood T-cell subsets,and immune function of the two groups were subsequently observed.SPSS 21.0 was used for data analysis.RESULTS The observation group demonstrated lower levels of interleukin-6 and C-reactive protein,and a higher level of tumor necrosis factor in comparison to the control group.After treatment,the immune function in the observation group was significantly better than in the control group.CONCLUSION Tongluo Jiedu prescription can improve the immune function and oxidative stress level of patients with oral cancer and accelerate the recovery process. 展开更多
关键词 Tongluo Jiedu prescription Oral cancer patients Immune function oxidative stress
下载PDF
Ethyl acetate fraction of Sargassum pallidum extract attenuates particulate matter-induced oxidative stress and inflammation in keratinocytes and zebrafish 被引量:1
15
作者 Wook Chul Kim Ji-Won Park +3 位作者 Bohyun Yun WonWoo Lee Kyung-Min Choi Seung-Hong Lee 《Asian Pacific Journal of Tropical Biomedicine》 SCIE CAS 2024年第4期137-146,共10页
Objective:To evaluate the effect of the ethyl acetate fraction derived from Sargassum pallidum extract against particulate matter(PM)-induced oxidative stress and inflammation in HaCaT cells and zebrafish.Methods:HaCa... Objective:To evaluate the effect of the ethyl acetate fraction derived from Sargassum pallidum extract against particulate matter(PM)-induced oxidative stress and inflammation in HaCaT cells and zebrafish.Methods:HaCaT cells and zebrafish were used to evaluate the protective effects of the ethyl acetate fraction of Sargassum pallidum extract against PM-induced oxidative stress and inflammation.The production of nitric oxide(NO),intracellular ROS,prostaglandin E_(2)(PGE_(2)),and pro-inflammatory cytokines,and the expression levels of COX-2,iNOS,and NF-κB were evaluated in PM-induced HaCaT cells.Furthermore,the levels of ROS,NO,and lipid peroxidation were assessed in the PM-exposed zebrafish model.Results:The ethyl acetate fraction of Sargassum pallidum extract significantly decreased the production of NO,intracellular ROS,and PGE_(2) in PM-induced HaCaT cells.In addition,the fraction markedly suppressed the levels of pro-inflammatory cytokines and inhibited the expression levels of COX-2,iNOS,and NF-κB.Furthermore,it displayed remarkable protective effects against PM-induced inflammatory response and oxidative stress,represented by the reduction of NO,ROS,and lipid peroxidation in zebrafish.Conclusions:The ethyl acetate fraction of Sargassum pallidum extract exhibits a protective effect against PM-induced oxidative stress and inflammation both in vitro and in vivo and has the potential as a candidate for the development of pharmaceutical and cosmeceutical products. 展开更多
关键词 Particulate matter INFLAMMATION oxidative stress Sargassum pallidum Ethyl acetate fraction ZEBRAFISH
下载PDF
Effect of organic mineral supplementation in reducing oxidative stress in Holstein calves during short‑term heat stress and recovery conditions 被引量:1
16
作者 A-Rang Son Seon-Ho Kim +3 位作者 Mahfuzul Islam Michelle Miguel Ye Pyae Naing Sang-Suk Lee 《Journal of Animal Science and Biotechnology》 SCIE CAS CSCD 2024年第2期812-825,共14页
Background This study investigated the effects of inorganic and organic minerals on physiological responses,oxidative stress reduction,and rumen microbiota in Holstein bull calves(123.81±9.76 kg;5 months old)duri... Background This study investigated the effects of inorganic and organic minerals on physiological responses,oxidative stress reduction,and rumen microbiota in Holstein bull calves(123.81±9.76 kg;5 months old)during short-term heat stress(HS)and recovery periods.Eight Holstein calves were randomly assigned to four treatment groups:no mineral supplementation(Con),inorganic minerals(IM),organic minerals(OM),and high-concentration organic minerals(HOM)and two thermal environments(HS and recovery)using 4×2 factorial arrangement in a crossover design of four periods of 35 d.Calves were maintained in a temperature-controlled barn.The experimental period consisted of 14 d of HS,14 d of recovery condititon,and a 7-d washing period.Results Body temperature and respiration rate were higher in HS than in the recovery conditions(P<0.05).Selenium concentration in serum was high in the HOM-supplemented calves in both HS(90.38μg/dL)and recovery periods(102.00μg/dL)(P<0.05).During the HS period,the serum cortisol was 20.26 ng/mL in the HOM group,which was 5.60 ng/mL lower than in the control group(P<0.05).The total antioxidant status was the highest in the OM group(2.71 mmol Trolox equivalent/L),followed by the HOM group during HS,whereas it was highest in the HOM group(2.58 mmol Trolox equivalent/L)during the recovery period(P<0.05).Plasma malondialdehyde and HSP70 levels were decreased by HOM supplementation during the HS and recovery periods,whereas SOD and GPX levels were not significantly affected(P>0.05).The principal coordinate analysis represented that the overall rumen microbiota was not influenced by mineral supplementation;however,temperature-induced microbial structure shifts were indicated(PERMANOVA:P<0.05).At the phylum level,Firmicutes and Actinobacteria decreased,whereas Fibrobacteres,Spirochaetes,and Tenericutes increased(P<0.05),under HS conditions.The genus Treponema increased under HS conditions,while Christensenella was higher in recovery conditions(P<0.05).Conclusion HOM supplementation during HS reduced cortisol concentrations and increased total antioxidant status in Holstein bull calves,suggesting that high organic mineral supplementation may alleviate the adverse effects of HS. 展开更多
关键词 Antioxidant status Heat stress Holstein bull calves Organic mineral supplementation oxidative stress
下载PDF
Activation of the wnt/β-catenin/CYP1B1 pathway alleviates oxidative stress and protects the blood-brain barrier under cerebral ischemia/reperfusion conditions 被引量:10
17
作者 Xingyong Chen Nannan Yao +4 位作者 Yanguang Mao Dongyun Xiao Yiyi Huang Xu Zhang Yinzhou Wang 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第7期1541-1547,共7页
Accumulating evidence suggests that oxidative stress and the Wnt/β-catenin pathway participate in stroke-induced disruption of the blood-brain barrier.However,the potential links between them following ischemic strok... Accumulating evidence suggests that oxidative stress and the Wnt/β-catenin pathway participate in stroke-induced disruption of the blood-brain barrier.However,the potential links between them following ischemic stroke remain largely unknown.The present study found that cerebral ischemia leads to oxidative stress and repression of the Wnt/β-catenin pathway.Meanwhile,Wnt/β-catenin pathway activation by the pharmacological inhibito r,TWS119,relieved oxidative stress,increased the levels of cytochrome P4501B1(CYP1B1)and tight junction-associated proteins(zonula occludens-1[ZO-1],occludin and claudin-5),as well as brain microvascular density in cerebral ischemia rats.Moreove r,rat brain microvascular endothelial cells that underwent oxygen glucose deprivation/reoxygenation displayed intense oxidative stress,suppression of the Wnt/β-catenin pathway,aggravated cell apoptosis,downregulated CYP1B1and tight junction protein levels,and inhibited cell prolife ration and migration.Overexpression ofβ-catenin or knockdown ofβ-catenin and CYP1B1 genes in rat brain mic rovascular endothelial cells at least partly ameliorated or exacerbated these effects,respectively.In addition,small interfering RNA-mediatedβ-catenin silencing decreased CYP1B1 expression,whereas CYP1B1 knoc kdown did not change the levels of glycogen synthase kinase 3β,Wnt-3a,andβ-catenin proteins in rat brain microvascular endothelial cells after oxygen glucose deprivatio n/reoxygenation.Thus,the data suggest that CYP1B1 can be regulated by Wnt/β-catenin signaling,and activation of the Wnt/β-catenin/CYP1B1 pathway contributes to alleviation of oxidative stress,increased tight junction levels,and protection of the blood-brain barrier against ischemia/hypoxia-induced injury. 展开更多
关键词 blood-brain barrier CYP1B1 oxidative stress oxygen glucose deprivation/reoxygenation tight junction vascular endothelial cells Wnt/β-catenin pathway β-catenin
下载PDF
Biochanin A attenuates spinal cord injury in rats during early stages by inhibiting oxidative stress and inflammasome activation 被引量:3
18
作者 Xigong Li Jing Fu +3 位作者 Ming Guan Haifei Shi Wenming Pan Xianfeng Lou 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第9期2050-2056,共7页
Previous studies have shown that Biochanin A,a flavonoid compound with estrogenic effects,can serve as a neuroprotective agent in the context of cerebral ischemia/reperfusion injury;howeve r,its effect on spinal cord ... Previous studies have shown that Biochanin A,a flavonoid compound with estrogenic effects,can serve as a neuroprotective agent in the context of cerebral ischemia/reperfusion injury;howeve r,its effect on spinal cord injury is still unclea r. In this study,a rat model of spinal cord injury was established using the heavy o bject impact method,and the rats were then treated with Biochanin A(40 mg/kg) via intrape ritoneal injection for 14 consecutive days.The res ults showed that Biochanin A effectively alleviated spinal cord neuronal injury and spinal co rd tissue injury,reduced inflammation and oxidative stress in spinal cord neuro ns,and reduced apoptosis and pyroptosis.In addition,Biochanin A inhibited the expression of inflammasome-related proteins(ASC,NLRP3,and GSDMD)and the Toll-like receptor 4/nuclear factor-κB pathway,activated the Nrf2/heme oxygenase 1 signaling pathway,and increased the expression of the autophagy markers LC3 Ⅱ,Beclin-1,and P62.Moreove r,the therapeutic effects of Biochanin A on early post-s pinal cord injury were similar to those of methylprednisolone.These findings suggest that Biochanin A protected neurons in the injured spinal cord through the Toll-like receptor 4/nuclear factor κB and Nrf2/heme oxygenase 1 signaling pathways.These findings suggest that Biochanin A can alleviate post-spinal cord injury at an early stage. 展开更多
关键词 apoptosis AUTOPHAGY Biochanin A heme oxygenase 1 INFLAMMATION Nrf2 protein nuclear factor kappa-B oxidative stress spinal cord injury Toll-like receptor 4
下载PDF
Inflammatory markers,oxidative stress,and mitochondrial dynamics:Repercussions on coronary artery disease in diabetes 被引量:1
19
作者 JoséCarlos Tatmatsu-Rocha Luan Santos Mendes-Costa 《World Journal of Diabetes》 SCIE 2024年第9期1853-1857,共5页
Inflammatory markers and mediators that affect the development of cardiovascular diseases have been the focus of recent scientific work.Thus,the purpose of this editorial is to promote a critical debate about the arti... Inflammatory markers and mediators that affect the development of cardiovascular diseases have been the focus of recent scientific work.Thus,the purpose of this editorial is to promote a critical debate about the article titled“Nε-carboxymethyl-lysine and inflammatory cytokines,markers,and mediators of coronary artery disease progression in diabetes”,published in the World Journal of Diabetes in 2024.This work directs us to reflect on the role of advanced glycation end products,which are pro-inflammatory products arising from the metabolism of fatty acids and sugars whose main marker in tissues is Nε-carboxymethyllysine(NML).Recent studies have linked high levels of pro-inflammatory agents with the development of coronary artery disease(CAD),especially tumor necrosis factor alpha,interleukins,and C-reactive protein.These inflammatory agents increase the production of reactive oxygen species(ROS),of which people with diabetes are known to have an increased production.The increase in ROS promotes lipid peroxidation,which causes damage to myocytes,promoting myocardial damage.Furthermore,oxidative stress induces the binding of NML to its receptor RAGE,which in turn activates the nuclear factor-kB,and consequently,inflammatory cytokines.These inflammatory cytokines induce endothelial dysfunction,with increased expression of adhesion molecules,changes in endothelial permeability and changes in the expression of nitric oxide.In this sense,the therapeutic use of monoclonal antibodies(inflammatory reducers such as statins and sodium-glucose transport inhibitors)has demonstrated positive results in the regression of atherogenic plaques and consequently CAD.On the other hand,many studies have demonstrated a relationship between mitochondrial dynamics,diabetes,and cardiovascular diseases.This link occurs since ROS have their origin in the imbalance in glucose metabolism that occurs in the mitochondrial matrix,and this imbalance can have its origin in inadequate diet as well as some pathologies.Photobiomodulation(PBM)has recently been considered a possible therapeutic agent for cardiovascular diseases due to its effects on mitochondrial dynamics and oxidative stress.In this sense,therapies such as PBM that act on pro-inflammatory mediators and mitochondrial modulation could benefit those with cardiovascular diseases. 展开更多
关键词 Mitochondrial dynamics DIABETES oxidative stress Coronary artery disease Nε-carboxymethyl-lysine
下载PDF
Crosstalk among Oxidative Stress,Autophagy,and Apoptosis in the Protective Effects of Ginsenoside Rb1 on Brain Microvascular Endothelial Cells:A Mixed Computational and Experimental Study 被引量:1
20
作者 Yi-miao LUO Shu-sen LIU +5 位作者 Ming ZHAO Wei WEI Jiu-xiu YAO Jia-hui SUN Yu CAO Hao LI 《Current Medical Science》 SCIE CAS 2024年第3期578-588,共11页
Objective Brain microvascular endothelial cells (BMECs) were found to shift from their usually inactive state to an active state in ischemic stroke (IS) and cause neuronal damage. Ginsenoside Rb1 (GRb1),a component de... Objective Brain microvascular endothelial cells (BMECs) were found to shift from their usually inactive state to an active state in ischemic stroke (IS) and cause neuronal damage. Ginsenoside Rb1 (GRb1),a component derived from medicinal plants,is known for its pharmacological benefits in IS,but its protective effects on BMECs have yet to be explored. This study aimed to investigate the potential protective effects of GRb1 on BMECs. Methods An in vitro oxygen-glucose deprivation/reperfusion (OGD/R) model was established to mimic ischemia-reperfusion (I/R) injury. Bulk RNA-sequencing data were analyzed by using the Human Autophagy Database and various bioinformatic tools,including gene set enrichment analysis (GSEA),Gene Ontology (GO) classification and enrichment analysis,Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis,protein-protein interaction network analysis,and molecular docking. Experimental validation was also performed to ensure the reliability of our findings. Results Rb1 had a protective effect on BMECs subjected to OGD/R injury. Specifically,GRb1 was found to modulate the interplay between oxidative stress,apoptosis,and autophagy in BMECs. Key targets such as sequestosome 1 (SQSTM1/p62),autophagy related 5 (ATG5),and hypoxia-inducible factor 1-alpha (HIF-1α) were identified,highlighting their potential roles in mediating the protective effects of GRb1 against IS-induced damage. Conclusion GRbl protects BMECs against OGD/R injury by influencing oxidative stress,apoptosis,and autophagy. The identification of SQSTM1/p62,ATG5,and HIF-1α as promising targets further supports the potential of GRb1 as a therapeutic agent for IS,providing a foundation for future research into its mechanisms and applications in IS treatment. 展开更多
关键词 ischemic stroke ginsenoside Rb1 brain microvascular endothelial cells oxidative stress AUTOPHAGY APOPTOSIS bioinformatic analysis
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部