The removal of NO from oxy-fuel combustion is typically incorporated in sour gas compression purification process. This process involves the oxidation of NO to NO2 at a high pressure of 1–3 MPa, followed by absorptio...The removal of NO from oxy-fuel combustion is typically incorporated in sour gas compression purification process. This process involves the oxidation of NO to NO2 at a high pressure of 1–3 MPa, followed by absorption of NO2 by water. In this pressure range, the NO conversion rates calculated using the existing kinetic constants are often higher than those obtained experimentally. This study aimed to achieve the regression of kinetic parameters of NO oxidation based on the existing experimental results and theoretical models.Based on three existing NO oxidation mechanisms, first, the expressions for NO conversion against residence time were derived. By minimizing the mean-square errors of NO conversion ratio, the optimum kinetic rate constants were obtained. Without considering the reverse reaction for NO oxidation, similar mean-square errors for NO conversion ratio were calculated. Considering the reverse reaction for NO oxidation based on the termolecular reaction mechanism, the minimum mean-square error for NO conversion ratio was obtained. Thus, the optimum NO oxidation rate in the pressure range 0.1–3 MPa can be expressed as follows:-d[NO]/dt=d[NO2]/dt=0.0026[NO]2[O2]-0.0034[NO2]2 Detailed elementary reactions for N2/NO/NO2/O2 system were established to simulate the NO oxidation rate. A sensitivity analysis showed that the critical elementary reaction is 2 NO + O2? 2 NO2. However, the simulated NO conversions at a high pressure of 10–30 bar are still higher than the experimental values and similar to those obtained from the models without considering the reverse reaction for NO oxidation.展开更多
The occurrence modes of alkali and alkaline-earth metals(AAEMs) in coal relate to their release behavior and ash formation during combustion. To better understand the transformation of AAEMs,the release behavior of ...The occurrence modes of alkali and alkaline-earth metals(AAEMs) in coal relate to their release behavior and ash formation during combustion. To better understand the transformation of AAEMs,the release behavior of water-soluble,HCl-soluble,HCl-insoluble AAEMs during Shenmu coal(SM coal) oxy-fuel combustion in the presence of SO2 and H2O in a drop-tube reactor was investigated through serial dissolution using H2O and HCl solutions. The results show that the release rates of AAEMs increase with an increase in temperature under the three atmospheres studied. The high release rates of Mg and Ca from SM coal are dependent on the high content of soluble Mg and Ca in SM coal. SO2 inhibits the release rates of AAEMs,while H2O promotes them. The effects of SO2 and H2O on the Na and K species are more evident than those on Mg and Ca species. All three types of AAEMs in coal can volatilize in the gas phase during coal combustion. The W-type AAEMs release excessively,whereas the release rates of I-type AAEMs are relatively lower. Different types of AAEM may interconvert through different pathways under certain conditions. Both SO2 and H2O promote the transformation reactions. The effect of SO2 was related to sulfate formation and the promotion by H2O occurs because of a decrease in the melting point of the solid as well as the reaction of H2O.展开更多
We prepared a series of glass samples under the different simulated atmosphere.Systematic evaluation about the performances of the glasses fabricated under the different simulated atmosphere indicates that the increas...We prepared a series of glass samples under the different simulated atmosphere.Systematic evaluation about the performances of the glasses fabricated under the different simulated atmosphere indicates that the increase of the H2O:CO2 ratio under the simulated atmosphere will decrease the softening point temperature,microhardness,viscosity,and chemical resistance,while increase the thermal expansion coefficient.Through the analysis of the hydroxyl content and network structure according to the IR transmitting spectra and NMR spectra,the structural origin of the evolution of the performances for the samples fabricated under different simulated atmosphere was elucidated.According to the feedback information from the customers,despite the decrease of some performances,the glass produced under oxy-fuel combustion can also fulfill the requirements of the engineering applications.Therefore,the technique of oxy-fuel combustion is worthy to be promoted in glass industry.展开更多
A new type of power supply which was called oxy-fuel combustion power plant was introduced to reduce greenhouse gasses emission. In this paper the volatile emission characteristic of pulverized coal is studied under a...A new type of power supply which was called oxy-fuel combustion power plant was introduced to reduce greenhouse gasses emission. In this paper the volatile emission characteristic of pulverized coal is studied under air atmosphere and oxy-fuel atmosphere. Combustion experiments of Datong bituminous coal were carried out in a wire mesh reactor at heating rates of 1 K/s, 10 K/s and 1000 K/s respectively under air and O2/CO2 atmosphere conditions in order to investigate the volatile emission characteristic. The concentrations of volatile (mainly CO and CH4) emission were on-line measured by infrared gas analyzer. It was indicated that the concentrations of CO and CH4 in O2/CO2 atmosphere were higher than those in air. The direct oxidation of carbon and gasification reaction between carbon and CO2 are the main causes of the increased amount of CO. The higher concentration of CO2 also results in the increased amount of CH4 in O2/CO2 conditions.展开更多
Oxy fuel combustion and conventional cycle(currently working cycle) in Kazeroon plant are modeled using commercial thermodynamic modeling software. Economic evaluation of the two models regarding the resources of tran...Oxy fuel combustion and conventional cycle(currently working cycle) in Kazeroon plant are modeled using commercial thermodynamic modeling software. Economic evaluation of the two models regarding the resources of transport and injection of carbon dioxide into oil fields at Gachsaran for enhanced oil recovery in the various oil price indices is conducted and indices net present value(NPV) and internal rate of return on investment(IRR) are calculated. The results of the two models reveal that gross efficiency of the oxy fuel cycle is more than reference cycle(62% compared to 49.03%), but the net efficiency is less(41.85% compared to 47.92%) because of the high-energy consumption of the components, particularly air separation unit(ASU) in the oxy fuel cycle. In this model, pure carbon dioxide with pressure of 20×105 Pa and purity of 96.84% was captured. NOX emissions also decrease by 4289.7 tons per year due to separation of nitrogen in ASU. In this model, none of the components of oxy fuel cycle is a major engineering challenge. With increasing oil price, economic justification of oxy fuel combustion model increases. With the price of oil at $ 80 per barrel in mind and $ 31 per ton fines for emissions of carbon dioxide in the atmosphere, IRR is the same for both models.展开更多
碳捕集利用与封存(简称CCUS)技术是钢铁行业实现碳中和目标的可行选择,但是我国钢铁生产以高炉-转炉长流程生产为主,产生碳排放的工序众多且碳浓度较低,目前仍缺少经济高效的碳捕集方案。在此背景下,通过引入气化炉用于重整炉顶煤气,改...碳捕集利用与封存(简称CCUS)技术是钢铁行业实现碳中和目标的可行选择,但是我国钢铁生产以高炉-转炉长流程生产为主,产生碳排放的工序众多且碳浓度较低,目前仍缺少经济高效的碳捕集方案。在此背景下,通过引入气化炉用于重整炉顶煤气,改进现有炉顶煤气循环-氧气高炉工艺的炉顶煤气循环方式,耦合富氧燃烧碳捕集技术,提出一种基于重整煤气喷吹-氧气高炉的富氧燃烧碳捕集方案,并利用Aspen Plus建模计算和碳流分析评估了该方案的节能减排潜力。结果表明:富氧燃烧碳捕集技术与氧气高炉低碳冶炼工艺有着良好的承接性与耦合性,两者耦合能够降低钢铁行业碳捕集的难度;富氧燃烧单位CO_(2)的捕集能耗为2623.91 kJ/kg,比现有的醇胺法的碳捕集能耗低51.4%,比变压吸附法的碳捕集能耗低26.2%;生产每吨钢材可通过富氧燃烧捕集到1.5 t CO_(2),有望实现钢铁生产过程的CO_(2)净零排放。总的来说,该方案能够在高炉低碳冶炼的基础上进行低成本、大规模的碳捕集,是钢铁行业绿色低碳转型的可行方案。展开更多
The co-firing of coal and biomass in oxy-fuel fluidized beds is one of the most promising technologies for capturing CO2.This technology has attracted wide attention from academia and industry in recent years as a neg...The co-firing of coal and biomass in oxy-fuel fluidized beds is one of the most promising technologies for capturing CO2.This technology has attracted wide attention from academia and industry in recent years as a negative emission method to capture CO2 produced by carbon contained in biomass.In the past decades,many studies have been carried out regarding experiments and numerical simulations under oxy-fuel combustion conditions.This paper firstly briefly discusses the techno-economic viability of the biomass and coal co-firing with oxycombustion and then presents a review of recent advancements involving experimental research and computational fluid dynamics(CFD)simulations in this field.Experimental studies on mechanism research,such as thermogravimetric analysis and tube furnace experiments,and fluidized bed experiments based on oxy-fuel fluidized beds with different sizes as well as the main findings,are summarized as a part of this review.It has been recognized that CFD is a useful approach for understanding the behaviors of the co-firing of coal and biomass in oxyfuel fluidized beds.We summarize a recent survey of published CFD research on oxy-fuel fluidized bed combustion,which categorized into Eulerian and Lagrangian methods.Finally,we discuss the challenges and interests for future research.展开更多
Fossil fuel combustion is one of the major means to meet the mounting global energy demand. However, the increasing NO_x and N_2 O emissions arising from fossil fuel combustion process have hazardous effects. Thus, mi...Fossil fuel combustion is one of the major means to meet the mounting global energy demand. However, the increasing NO_x and N_2 O emissions arising from fossil fuel combustion process have hazardous effects. Thus, mitigating these gases is vital to attain a sustainable environment. Interestingly, oxy-fuel combustion in fluidized bed for carbon capture and minimized NO_x emissions is strongly sustainable compare to the other approaches. It was assessed that NO_x formation and fuel-N conversion have significant limitation under oxy-fluidized bed compared to air mode and the mechanism of NO_x formation is still deficient and requires further development. In addition, this review paper discussed the potential of primary measure as low emission process with others supplementary techniques for feasible NO_x reduction. The influences of combustion mode, operating parameters, and reduction techniques such as flue gas recirculation, oxygen staging, biomass co-firing, catalyst, influence of fluidized bed design and structure, decoupling combustion and their merges are respectively evaluated. Findings show that significant minimization of NO_x emission can be achieved through combination of primary and secondary reduction techniques.展开更多
基金Supported by the Shanghai Pujiang Program(16PJ1407900)
文摘The removal of NO from oxy-fuel combustion is typically incorporated in sour gas compression purification process. This process involves the oxidation of NO to NO2 at a high pressure of 1–3 MPa, followed by absorption of NO2 by water. In this pressure range, the NO conversion rates calculated using the existing kinetic constants are often higher than those obtained experimentally. This study aimed to achieve the regression of kinetic parameters of NO oxidation based on the existing experimental results and theoretical models.Based on three existing NO oxidation mechanisms, first, the expressions for NO conversion against residence time were derived. By minimizing the mean-square errors of NO conversion ratio, the optimum kinetic rate constants were obtained. Without considering the reverse reaction for NO oxidation, similar mean-square errors for NO conversion ratio were calculated. Considering the reverse reaction for NO oxidation based on the termolecular reaction mechanism, the minimum mean-square error for NO conversion ratio was obtained. Thus, the optimum NO oxidation rate in the pressure range 0.1–3 MPa can be expressed as follows:-d[NO]/dt=d[NO2]/dt=0.0026[NO]2[O2]-0.0034[NO2]2 Detailed elementary reactions for N2/NO/NO2/O2 system were established to simulate the NO oxidation rate. A sensitivity analysis showed that the critical elementary reaction is 2 NO + O2? 2 NO2. However, the simulated NO conversions at a high pressure of 10–30 bar are still higher than the experimental values and similar to those obtained from the models without considering the reverse reaction for NO oxidation.
基金support for this research from the Natural Science Foundation of China (U1261110)the Natural Science Foundation of Shanxi Province (20130110422)the Foundation of State Key Laboratory of Coal Combustion (FSKLCC-0914)
文摘The occurrence modes of alkali and alkaline-earth metals(AAEMs) in coal relate to their release behavior and ash formation during combustion. To better understand the transformation of AAEMs,the release behavior of water-soluble,HCl-soluble,HCl-insoluble AAEMs during Shenmu coal(SM coal) oxy-fuel combustion in the presence of SO2 and H2O in a drop-tube reactor was investigated through serial dissolution using H2O and HCl solutions. The results show that the release rates of AAEMs increase with an increase in temperature under the three atmospheres studied. The high release rates of Mg and Ca from SM coal are dependent on the high content of soluble Mg and Ca in SM coal. SO2 inhibits the release rates of AAEMs,while H2O promotes them. The effects of SO2 and H2O on the Na and K species are more evident than those on Mg and Ca species. All three types of AAEMs in coal can volatilize in the gas phase during coal combustion. The W-type AAEMs release excessively,whereas the release rates of I-type AAEMs are relatively lower. Different types of AAEM may interconvert through different pathways under certain conditions. Both SO2 and H2O promote the transformation reactions. The effect of SO2 was related to sulfate formation and the promotion by H2O occurs because of a decrease in the melting point of the solid as well as the reaction of H2O.
基金Supported by National Natural Science Foundation of China Regional Fund Project(No.51562008)
文摘We prepared a series of glass samples under the different simulated atmosphere.Systematic evaluation about the performances of the glasses fabricated under the different simulated atmosphere indicates that the increase of the H2O:CO2 ratio under the simulated atmosphere will decrease the softening point temperature,microhardness,viscosity,and chemical resistance,while increase the thermal expansion coefficient.Through the analysis of the hydroxyl content and network structure according to the IR transmitting spectra and NMR spectra,the structural origin of the evolution of the performances for the samples fabricated under different simulated atmosphere was elucidated.According to the feedback information from the customers,despite the decrease of some performances,the glass produced under oxy-fuel combustion can also fulfill the requirements of the engineering applications.Therefore,the technique of oxy-fuel combustion is worthy to be promoted in glass industry.
文摘A new type of power supply which was called oxy-fuel combustion power plant was introduced to reduce greenhouse gasses emission. In this paper the volatile emission characteristic of pulverized coal is studied under air atmosphere and oxy-fuel atmosphere. Combustion experiments of Datong bituminous coal were carried out in a wire mesh reactor at heating rates of 1 K/s, 10 K/s and 1000 K/s respectively under air and O2/CO2 atmosphere conditions in order to investigate the volatile emission characteristic. The concentrations of volatile (mainly CO and CH4) emission were on-line measured by infrared gas analyzer. It was indicated that the concentrations of CO and CH4 in O2/CO2 atmosphere were higher than those in air. The direct oxidation of carbon and gasification reaction between carbon and CO2 are the main causes of the increased amount of CO. The higher concentration of CO2 also results in the increased amount of CH4 in O2/CO2 conditions.
文摘Oxy fuel combustion and conventional cycle(currently working cycle) in Kazeroon plant are modeled using commercial thermodynamic modeling software. Economic evaluation of the two models regarding the resources of transport and injection of carbon dioxide into oil fields at Gachsaran for enhanced oil recovery in the various oil price indices is conducted and indices net present value(NPV) and internal rate of return on investment(IRR) are calculated. The results of the two models reveal that gross efficiency of the oxy fuel cycle is more than reference cycle(62% compared to 49.03%), but the net efficiency is less(41.85% compared to 47.92%) because of the high-energy consumption of the components, particularly air separation unit(ASU) in the oxy fuel cycle. In this model, pure carbon dioxide with pressure of 20×105 Pa and purity of 96.84% was captured. NOX emissions also decrease by 4289.7 tons per year due to separation of nitrogen in ASU. In this model, none of the components of oxy fuel cycle is a major engineering challenge. With increasing oil price, economic justification of oxy fuel combustion model increases. With the price of oil at $ 80 per barrel in mind and $ 31 per ton fines for emissions of carbon dioxide in the atmosphere, IRR is the same for both models.
文摘碳捕集利用与封存(简称CCUS)技术是钢铁行业实现碳中和目标的可行选择,但是我国钢铁生产以高炉-转炉长流程生产为主,产生碳排放的工序众多且碳浓度较低,目前仍缺少经济高效的碳捕集方案。在此背景下,通过引入气化炉用于重整炉顶煤气,改进现有炉顶煤气循环-氧气高炉工艺的炉顶煤气循环方式,耦合富氧燃烧碳捕集技术,提出一种基于重整煤气喷吹-氧气高炉的富氧燃烧碳捕集方案,并利用Aspen Plus建模计算和碳流分析评估了该方案的节能减排潜力。结果表明:富氧燃烧碳捕集技术与氧气高炉低碳冶炼工艺有着良好的承接性与耦合性,两者耦合能够降低钢铁行业碳捕集的难度;富氧燃烧单位CO_(2)的捕集能耗为2623.91 kJ/kg,比现有的醇胺法的碳捕集能耗低51.4%,比变压吸附法的碳捕集能耗低26.2%;生产每吨钢材可通过富氧燃烧捕集到1.5 t CO_(2),有望实现钢铁生产过程的CO_(2)净零排放。总的来说,该方案能够在高炉低碳冶炼的基础上进行低成本、大规模的碳捕集,是钢铁行业绿色低碳转型的可行方案。
基金supported by the Key Program of the National Natural Science Foundation of China(51736002)the Natural Science Foundation of Jiangsu Province(BK20180386).
文摘The co-firing of coal and biomass in oxy-fuel fluidized beds is one of the most promising technologies for capturing CO2.This technology has attracted wide attention from academia and industry in recent years as a negative emission method to capture CO2 produced by carbon contained in biomass.In the past decades,many studies have been carried out regarding experiments and numerical simulations under oxy-fuel combustion conditions.This paper firstly briefly discusses the techno-economic viability of the biomass and coal co-firing with oxycombustion and then presents a review of recent advancements involving experimental research and computational fluid dynamics(CFD)simulations in this field.Experimental studies on mechanism research,such as thermogravimetric analysis and tube furnace experiments,and fluidized bed experiments based on oxy-fuel fluidized beds with different sizes as well as the main findings,are summarized as a part of this review.It has been recognized that CFD is a useful approach for understanding the behaviors of the co-firing of coal and biomass in oxyfuel fluidized beds.We summarize a recent survey of published CFD research on oxy-fuel fluidized bed combustion,which categorized into Eulerian and Lagrangian methods.Finally,we discuss the challenges and interests for future research.
基金Supported by the University of Malaya,Ministry of Education Malaysia under the grant FP064-2015A(FRGS)IPPP grant number:PG101-2015B
文摘Fossil fuel combustion is one of the major means to meet the mounting global energy demand. However, the increasing NO_x and N_2 O emissions arising from fossil fuel combustion process have hazardous effects. Thus, mitigating these gases is vital to attain a sustainable environment. Interestingly, oxy-fuel combustion in fluidized bed for carbon capture and minimized NO_x emissions is strongly sustainable compare to the other approaches. It was assessed that NO_x formation and fuel-N conversion have significant limitation under oxy-fluidized bed compared to air mode and the mechanism of NO_x formation is still deficient and requires further development. In addition, this review paper discussed the potential of primary measure as low emission process with others supplementary techniques for feasible NO_x reduction. The influences of combustion mode, operating parameters, and reduction techniques such as flue gas recirculation, oxygen staging, biomass co-firing, catalyst, influence of fluidized bed design and structure, decoupling combustion and their merges are respectively evaluated. Findings show that significant minimization of NO_x emission can be achieved through combination of primary and secondary reduction techniques.