期刊文献+
共找到54篇文章
< 1 2 3 >
每页显示 20 50 100
Forms of potassium and chlorine from oxy-fuel co-combustion of lignite coal and corn stover 被引量:3
1
作者 Chansa Oris Zhongyang Luo +1 位作者 Wennan Zhang Chunjiang Yu 《Carbon Resources Conversion》 2019年第2期103-110,共8页
In this work,the forms of potassium and chlorine from oxy-fuel co-combustion of lignite coal and corn stover under atmospheric pressure were investigated.In order to check transitional stage,the feedstocks were combus... In this work,the forms of potassium and chlorine from oxy-fuel co-combustion of lignite coal and corn stover under atmospheric pressure were investigated.In order to check transitional stage,the feedstocks were combusted stepwise,first by pyrolysis to form coke under N2 environment and later by coke combustion into the ash at 850℃ in O_(2)/CO_(2) atmosphere.The results show that an increase in blend ratio from 15%to 40%results in an increase in water-soluble potassium in the feedstock and the ashes from 0.15%to 0.4%and 0.015%to 0.038%in weight respectively.The water-soluble potassium is present mainly as KCl and K2SO4.For ammonium acetate soluble potassium,a similar trend to water-soluble potassium is presented but with a much lower content of potassium.The bound potassium in the fuel matrix exists,likely in the form of AlKSi_(2)O_(6).Chlorides are present mainly in the form of KCl which is the dominant water-soluble compound. 展开更多
关键词 co-combustion(biomas&coal) Oxyfuel combustion Chemical fractionation Phase-mineral identifications
原文传递
Investigation of oxy-fuel combustion for methane and acid gas in a diffusion flame
2
作者 Songling Guo Xun Tao +5 位作者 Fan Zhou Mengyan Yu Yufan Wu Yunfei Gao Lu Ding Fuchen Wang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第1期106-116,共11页
Co-combustion of methane(CH4)and acid gas(AG)is required to sustain the temperature in Claus reaction furnace.In this study,oxy-fuel combustion of methane and acid gas has been experimentally studied in a diffusion fl... Co-combustion of methane(CH4)and acid gas(AG)is required to sustain the temperature in Claus reaction furnace.In this study,oxy-fuel combustion of methane and acid gas has been experimentally studied in a diffusion flame.Three equivalence ratios(ER=1.0,1.5,2.0)and CH_(4)-addition ratios(CH_(4)/AG=0.3,0.5,0.7)were examined and the flame was interpreted by analyzing the distributions of the temperature and species concentration along central axial.CH_(4)-AG diffusion flame could be classified into three sections namely initial reaction,oxidation and complex reaction sections.Competitive oxidation of CH_(4)and H_(2)S was noted in the first section wherein H_(2)S was preferred and both were mainly proceeding decomposition and partial oxidation.SO_(2)was formed at oxidation section together with obvious presence of H2 and CO.However,H2 and CO were inclined to be sustained under fuel rich condition in the complex reaction section.Reducing ER and increasing CH4/AG contributed to higher temperature,H_(2)S and CH_(4)oxidation and CO_(2)reactivity.Hence a growing trend for CH_(4)and AG to convert into H_(2),CO and SO_(2)could be witnessed.And this factor enhanced the generation of CS2 and COS in the flame inner core by interactions of CH4 and CO_(2)with sulfur species.COS was formed through the interactions of CO and CO_(2)with sulfur species.The CS_(2)production directly relied on reaction of CH_(4)with sulfur species.The concentration of COS was greater than CS_(2)since CS_(2)was probably inhibited due to the presence of H_(2).COS and CS_(2)could be consumed by further oxidation or other complex reactions. 展开更多
关键词 Acid gas METHANE oxy-fuel combustion OXIDATION Chemical analysis Carbon sulfides
下载PDF
Study of the kinetic behaviour of biomass and coal during oxyfuel co-combustion 被引量:7
3
作者 Oris Chansa Zhongyang Luo Chunjiang Yu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2020年第7期1796-1804,共9页
In this study,the thermogravimetric analysis(TGA)method has been used to evaluate the kinetic behavior of biomass,coal and its blends during oxyfuel co-combustion.The thermogravimetric results have been evaluated by t... In this study,the thermogravimetric analysis(TGA)method has been used to evaluate the kinetic behavior of biomass,coal and its blends during oxyfuel co-combustion.The thermogravimetric results have been evaluated by the Coats-Redfern method and validated by Criado’s method.TG and DTG curves indicate that as the oxygen concentration increases the ignition and burn out temperatures approach a lower temperature region.The combustion characteristic index shows that biomass to coal blends of 28%and 40%respectively can achieve enhanced combustion up to 60%oxygen enrichment.In the devolatilization region,the activation energies for coal and blends reduce while in the char oxidation region,they increase with rise in oxygen concentration.Biomass,however,indicates slightly different combustion characteristic of being degraded in a single step and its activation energies increase with rise in oxygen concentration.It is demonstrated in this work that oxygen enrichment has more positive combustion effect on coal than biomass.At 20%oxygen enrichment,28%and 40%blends indicate activation energy of 132.8 and 125.5 kJ·mol^-1 respectively which are lower than coal at 148.1 kJ·mol^-1 but higher than biomass at 81.5 kJ·mol^-1 demonstrating synergistic effect of fuel blending.Also,at char combustion step,an increase in activation energy for 28%blend is found to be 0.36 kJ·mol^-1 per rise in oxygen concentration which is higher than in 40%blend at 0.28 kJ·mol^-1. 展开更多
关键词 Oxyfuel co-combustion Thermogravimetric analysis Kinetic analysis Activation energy Thermal degradation
下载PDF
Co-combustion of municipal solid waste and coal gangue in a circulating fluidized bed combustor 被引量:3
4
作者 Jianguang Qin Ruidong Zhao +2 位作者 Tianju Chen Zhongyue Zi Jinhu Wu 《International Journal of Coal Science & Technology》 EI 2019年第2期218-224,共7页
Mixed incineration of municipal solid waste (MSW) in existing coal gangue power plant is a potentially highefficiency and low-cost MSW disposal way. In this paper, the co-combustion and pollutants emission characteris... Mixed incineration of municipal solid waste (MSW) in existing coal gangue power plant is a potentially highefficiency and low-cost MSW disposal way. In this paper, the co-combustion and pollutants emission characteristic of MSW and coal gangue was investigated in a circulating fluidized bed (CFB) combustor. The effect of MSW blend ratio, bed temperature and excess air ratio was detailedly studied. The results show the NOX and HC1 emission increases with the increasing MSW blend ratio and the SO2 emission decreases. With the increase of bed temperature, the CO emission decreases while the NOX and SO2 emission increases. The HC1 emission is nearly stable in the temperature range of 850-950℃. The increase of excess air ratio gradually increases the NOX emission but has no significant effect on the SO2 emission. The HC1 emission firstly increases and then decreases with the increase of excess air ratio. For a typical CFB operating condition with excess air ratio of 1.4, bed temperature of 900℃ and MSW blend ratio of 10%, the original CO, NOX, SO2 and HC1 emissions are 52, 181, 3373 and 58 mg/Nm^3 respectively. 展开更多
关键词 MUNICIPAL solid waste Coal GANGUE co-combustion CIRCULATING fluidized BED
下载PDF
Study on Co-combustion Characteristics of Superfine Coal with Conventional Size Coal in O<sub>2</sub>/CO<sub>2</sub>Atmosphere 被引量:1
5
作者 Yuhang Zhang Mingyan Gu +1 位作者 Biao Ma Huaqiang Chu 《Energy and Power Engineering》 2013年第4期36-40,共5页
The pulverized coal combustion in O2/CO2 atmosphere is one of the promising new technologies which can reduce the emission of carbon dioxide and NOx. In this study, the combustion behaviors of different mixing ratio o... The pulverized coal combustion in O2/CO2 atmosphere is one of the promising new technologies which can reduce the emission of carbon dioxide and NOx. In this study, the combustion behaviors of different mixing ratio of Shenhua coal with 20 μm and 74 μm particle size in the O2/CO2 atmosphere and air atmosphere were studied by using a thermal-gravimetric analyzer. The combustion characteristics such as ignition and burnout behavior were investigated in the temperature from 20℃ to 850℃. The influence of mixing ratio on combustion characteristics was conduced. The results obtained showed that the ignition temperature of the two kinds of particle size in O2/CO2 atmosphere is higher than in the air, while the activation energy in O2/CO2 atmosphere is lower. With the increasing ratio of 20 μm superfine pulverized coals, the ignition temperature and the activation energy decreased, while the DTG peak value increased, the maximum burning rate position advanced. There were three trends for the ignition temperature curve with the increasing of superfine coal ratio: the ignition of the mixed coal decreased rapidly, then changed less, at last reduced quickly. 展开更多
关键词 COAL Particle SIZE co-combustion Thermo-gravimetric Heat of Combustion
下载PDF
Comparative investigation of microstructure and high-temperature oxidation resistance of high-velocity oxy-fuel sprayed CoNiCrAlY/nano-Al_(2)O_(3) composite coatings using satellited powders 被引量:2
6
作者 Pejman Zamani Zia Valefi 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第9期1779-1791,共13页
Satellited CoNiCrAlY–Al_(2)O_(3)feedstocks with 2wt%, 4wt%, and 6wt% oxide nanoparticles and pure CoNiCrAlY powder were deposited by the high-velocity oxy fuel process on an Inconel738 superalloy substrate. The oxida... Satellited CoNiCrAlY–Al_(2)O_(3)feedstocks with 2wt%, 4wt%, and 6wt% oxide nanoparticles and pure CoNiCrAlY powder were deposited by the high-velocity oxy fuel process on an Inconel738 superalloy substrate. The oxidation test was performed at 1050℃ for 5, 50, 100,150, 200, and 400 h. The microstructure and phase composition of powders and coatings were characterized by scanning electron microscopy and X-ray diffraction, respectively. The bonding strength of the coatings was also evaluated. The results proved that with the increase in the percentage of nanoparticles(from 2wt% to 6wt%), the amount of porosity(from 1vol% to 4.7vol%), unmelted particles, and roughness of the coatings(from 4.8 to 8.8 μm) increased, and the bonding strength decreased from 71 to 48 MPa. The thicknesses of the thermally grown oxide layer of pure and composite coatings(2wt%, 4wt%, and 6wt%) after 400 h oxidation were measured as 6.5, 5.5, 7.6, and 8.1 μm, respectively.The CoNiCrAlY–2wt% Al_(2)O_(3)coating showed the highest oxidation resistance due to the diffusion barrier effect of well-dispersed nanoparticles. The CoNiCrAlY–6wt% Al_(2)O_(3)coating had the lowest oxidation resistance due to its rough surface morphology and porous microstructure. 展开更多
关键词 MCrAlY coating CoNiCrAlY-Al_(2)O_(3)composite satellited feedstock MICROSTRUCTURE high-temperature oxidation high-velocity oxy-fuel spraying
下载PDF
Numerical Simulation of Co-Combustion of Pulverized Coal and Different Proportions of Refused Derived Fuel in TTF Precalciner
7
作者 Jiekun Zhu Hongtao Kao 《Journal of Renewable Materials》 SCIE EI 2021年第7期1329-1343,共15页
Based on the theory of computational fluid dynamics(CFD),pulverized coal combustion alone,and the co-combustion of pulverized coal and refuse-derived fuel(RDF)in a Trinal-sprayed calciner(TTF)precalciner were simulate... Based on the theory of computational fluid dynamics(CFD),pulverized coal combustion alone,and the co-combustion of pulverized coal and refuse-derived fuel(RDF)in a Trinal-sprayed calciner(TTF)precalciner were simulated.The results revealed that when coal was used as a single fuel,the velocity field in the precalciner had good symmetry,and formed three spray effects and multiple recirculation zones.The main combustion zone was distributed in the lower tertiary air and pulverized coal area,and the highest temperature reached up to 1,500 K.According to the simulation results,the predicted decomposing rate of raw meal was 90.12%,which is in good agreement with the actual measured result.In addition,with the increase in RDF content,the average temperature of the furnace,the decomposition rate of the raw meal,and the NO_(x) concentration all exhibited a downward trend.Under the condition of ensuring the normal operation of the precalciner,blending with 20%RDF is the most reasonable strategy,and the NO_(x) emissions decreased by approximately 16%. 展开更多
关键词 Numerical simulation TTF precalciner RDF co-combustion NO_(x)emission
下载PDF
Effect of carbon dioxide on oxy-fuel combustion of hydrogen sulfide:An experimental and kinetic modeling
8
作者 Xun Tao Fan Zhou +6 位作者 Xinlei Yu Songling Guo Yunfei Gao Lu Ding Guangsuo Yu Zhenghua Dai Fuchen Wang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第7期105-117,共13页
CO_(2) is an important component in the acid gas and it is necessary to study the effect of CO_(2) presence on the oxy-fuel combustion of H_(2)S with particular focus on the formation of carbonyl sulfide(COS).The oxyf... CO_(2) is an important component in the acid gas and it is necessary to study the effect of CO_(2) presence on the oxy-fuel combustion of H_(2)S with particular focus on the formation of carbonyl sulfide(COS).The oxyfuel combustion of acid gas was conducted in a coaxial jet double channel burner.The distribution of flame temperature and products under stoichiometric condition along axial(R=0.0)and radial at about 3.0 mm(R=0.75)were analyzed,respectively.The Chemkin-Pro software was used to analyze the rate of production(ROP)for gas products and the reaction pathway of acid gas combustion.Both experimental and simulation results showed that acid gas combustion experienced the H2S chemical decomposition,H_(2)S oxidation and accompanied by H_(2) oxidation.The CO_(2) presence reduced the peak flame temperature and triggered the formation of COS in the flame area.COS formation at R=0.0 was mainly through the reaction of CO_(2) and CO with sulfur species,whereas at R=0.75 it was through the reaction of CO with sulfur species.The ROP results indicated that H_(2) was mainly from H_(2)O decomposition in the H_(2)S oxidation stage,and COS was formed by the reaction of CO_(2) with H_(2)S.ROP and other detailed analysis further revealed the role of H,OH and SH radicals in each stage of H_(2)S conversion.This study revealed the COS formation mechanisms with CO_(2) presence in the oxy-fuel combustion of H_(2)S and could offer important insights for pollutant control. 展开更多
关键词 Carbon dioxide oxy-fuel combustion of H_(2)S Reaction pathway KINETICS OXIDATION
下载PDF
Catalytic co-combustion of biomass and brown coal in a fluidized bed:Economic and environmental benefits
9
作者 Yury V.Dubinin Nikolay A.Yazykov +3 位作者 Petr M.Yeletsky Roman B.Tabakaev Aleksandra I.Belyanovskaya Vadim A.Yakovlev 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2024年第6期24-36,共13页
The work is devoted to the study of combustion of brown coal,pine sawdust,and their mixtures in a fluidized bed of catalyst at 600-750℃.It is shown that an increase in the content of sawdust in a mixture with brown c... The work is devoted to the study of combustion of brown coal,pine sawdust,and their mixtures in a fluidized bed of catalyst at 600-750℃.It is shown that an increase in the content of sawdust in a mixture with brown coal leads to an increase in the burnout degree of solid fuel from 94.4%to 99.9%,while the emission of greenhouse gases in the form of CO_(2)CO and NOxis reduced(CO_(2)from the biomass is not included in the balance).The high content of alkaline earth metal oxides(CaO and MgO)in the mineral part of brown coal,sawdust,and their mixtures eliminates the emission of sulfur oxides and the slagging of heat-exchange surfaces during the combustion in a fluidized bed of catalyst.The optimal temperature,when the highest burnout degree of the above fuels is achieved in the combustion is 750℃.It is also shown that the increase in temperature and the content of sawdust in the composition of the fuel mixtures has a positive effect on the economic and environmental process indicators. 展开更多
关键词 co-combustion Fluidized catalyst bed BIOMASS Coal Economic effect Environmental impact
原文传递
Co-firing of coal and biomass in oxy-fuel fluidized bed for CO2 capture: A review of recent advances 被引量:4
10
作者 Qinwen Liu Yan Shi +1 位作者 Wenqi Zhong Aibing Yu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2019年第10期2261-2272,共12页
The co-firing of coal and biomass in oxy-fuel fluidized beds is one of the most promising technologies for capturing CO2.This technology has attracted wide attention from academia and industry in recent years as a neg... The co-firing of coal and biomass in oxy-fuel fluidized beds is one of the most promising technologies for capturing CO2.This technology has attracted wide attention from academia and industry in recent years as a negative emission method to capture CO2 produced by carbon contained in biomass.In the past decades,many studies have been carried out regarding experiments and numerical simulations under oxy-fuel combustion conditions.This paper firstly briefly discusses the techno-economic viability of the biomass and coal co-firing with oxycombustion and then presents a review of recent advancements involving experimental research and computational fluid dynamics(CFD)simulations in this field.Experimental studies on mechanism research,such as thermogravimetric analysis and tube furnace experiments,and fluidized bed experiments based on oxy-fuel fluidized beds with different sizes as well as the main findings,are summarized as a part of this review.It has been recognized that CFD is a useful approach for understanding the behaviors of the co-firing of coal and biomass in oxyfuel fluidized beds.We summarize a recent survey of published CFD research on oxy-fuel fluidized bed combustion,which categorized into Eulerian and Lagrangian methods.Finally,we discuss the challenges and interests for future research. 展开更多
关键词 oxy-fuel combustion CO-FIRING of COAL and BIOMASS oxy-fuel fluidized BED CFD simulation
下载PDF
Transformation of alkali and alkaline-earth metals during coal oxy-fuel combustion in the presence of SO_2 and H_2O 被引量:6
11
作者 Liying Wang Haixin Mao +3 位作者 Zengshuang Wang Jian-Ying Lin Meijun Wang Liping Chang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2015年第4期381-387,共7页
The occurrence modes of alkali and alkaline-earth metals(AAEMs) in coal relate to their release behavior and ash formation during combustion. To better understand the transformation of AAEMs,the release behavior of ... The occurrence modes of alkali and alkaline-earth metals(AAEMs) in coal relate to their release behavior and ash formation during combustion. To better understand the transformation of AAEMs,the release behavior of water-soluble,HCl-soluble,HCl-insoluble AAEMs during Shenmu coal(SM coal) oxy-fuel combustion in the presence of SO2 and H2O in a drop-tube reactor was investigated through serial dissolution using H2O and HCl solutions. The results show that the release rates of AAEMs increase with an increase in temperature under the three atmospheres studied. The high release rates of Mg and Ca from SM coal are dependent on the high content of soluble Mg and Ca in SM coal. SO2 inhibits the release rates of AAEMs,while H2O promotes them. The effects of SO2 and H2O on the Na and K species are more evident than those on Mg and Ca species. All three types of AAEMs in coal can volatilize in the gas phase during coal combustion. The W-type AAEMs release excessively,whereas the release rates of I-type AAEMs are relatively lower. Different types of AAEM may interconvert through different pathways under certain conditions. Both SO2 and H2O promote the transformation reactions. The effect of SO2 was related to sulfate formation and the promotion by H2O occurs because of a decrease in the melting point of the solid as well as the reaction of H2O. 展开更多
关键词 COAL oxy-fuel combustion Alkali metal Alkaline-earth metal Occurrence mode TRANSFORMATION
下载PDF
Gas-phase oxidation of NO at high pressure relevant to sour gas compression purification process for oxy-fuel combustion flue gas 被引量:3
12
作者 Qian Cheng Dunyu Liu +3 位作者 Jun Chen Jing Jin Wei Li Shuaishuai Yu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2019年第4期884-895,共12页
The removal of NO from oxy-fuel combustion is typically incorporated in sour gas compression purification process. This process involves the oxidation of NO to NO2 at a high pressure of 1–3 MPa, followed by absorptio... The removal of NO from oxy-fuel combustion is typically incorporated in sour gas compression purification process. This process involves the oxidation of NO to NO2 at a high pressure of 1–3 MPa, followed by absorption of NO2 by water. In this pressure range, the NO conversion rates calculated using the existing kinetic constants are often higher than those obtained experimentally. This study aimed to achieve the regression of kinetic parameters of NO oxidation based on the existing experimental results and theoretical models.Based on three existing NO oxidation mechanisms, first, the expressions for NO conversion against residence time were derived. By minimizing the mean-square errors of NO conversion ratio, the optimum kinetic rate constants were obtained. Without considering the reverse reaction for NO oxidation, similar mean-square errors for NO conversion ratio were calculated. Considering the reverse reaction for NO oxidation based on the termolecular reaction mechanism, the minimum mean-square error for NO conversion ratio was obtained. Thus, the optimum NO oxidation rate in the pressure range 0.1–3 MPa can be expressed as follows:-d[NO]/dt=d[NO2]/dt=0.0026[NO]2[O2]-0.0034[NO2]2 Detailed elementary reactions for N2/NO/NO2/O2 system were established to simulate the NO oxidation rate. A sensitivity analysis showed that the critical elementary reaction is 2 NO + O2? 2 NO2. However, the simulated NO conversions at a high pressure of 10–30 bar are still higher than the experimental values and similar to those obtained from the models without considering the reverse reaction for NO oxidation. 展开更多
关键词 oxy-fuel combustion NO oxidation SOUR gas compression
下载PDF
Comparisons of Fly Ash and Deposition Between Air and Oxy-Fuel Combustion in Bench-Scale Fluidized Bed with Limestone Addition 被引量:1
13
作者 Zhimin Zheng Hui Wang +3 位作者 Yongjun Guo Li Yang Shuai Guo Shaohua Wu 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2015年第5期78-84,共7页
In Oxy-fuel circulating fluidized bed,the residual Ca O particles may react with high concentration of CO2 in flue gas to form bonded deposit on heat transfer surfaces in backpass when limestone is used as a sorbent t... In Oxy-fuel circulating fluidized bed,the residual Ca O particles may react with high concentration of CO2 in flue gas to form bonded deposit on heat transfer surfaces in backpass when limestone is used as a sorbent to capture SO2.In this paper,experiments were designed on ash deposition in a bench-scale fluidized bed under oxy-fuel and air atmosphere. A novel ash deposit sampling probe was used to simulate the tubes of tail surfaces.The chemical composition of fly ash and ash deposit from both air-firing and oxy-fuel firing cases were analyzed by Inductively Coupled Plasma-Atomic Emission Spectrometry( ICP-AES) and Scanning Electron Microscopy( SEM),respectively. The degrees of carbonation reaction of ash deposits were measured by Thermo Gravimetric Analysis. The results showed that there are distinct differences in fly ash deposition rate between oxy-fuel and air firing cases,and oxy-fuel combustion with limestone addition can affect chemical composition of fly ash and ash deposit,especially for elements of Ca,Na,K,and S. However,the carbonation reaction degree of ash deposits is found weak,which is due to the relatively low Ca O content in ash deposit or not long enough of the sampling time. 展开更多
关键词 CARBONATION ash deposit fly ash oxy-fuel CFB
下载PDF
Microstructure and Performances of Glasses Melt under Oxy-fuel Combustion
14
作者 李铭涵 DUAN Qiutong +2 位作者 ZHAO Huifeng TAO Haizheng 姜宏 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2017年第1期19-22,共4页
We prepared a series of glass samples under the different simulated atmosphere.Systematic evaluation about the performances of the glasses fabricated under the different simulated atmosphere indicates that the increas... We prepared a series of glass samples under the different simulated atmosphere.Systematic evaluation about the performances of the glasses fabricated under the different simulated atmosphere indicates that the increase of the H2O:CO2 ratio under the simulated atmosphere will decrease the softening point temperature,microhardness,viscosity,and chemical resistance,while increase the thermal expansion coefficient.Through the analysis of the hydroxyl content and network structure according to the IR transmitting spectra and NMR spectra,the structural origin of the evolution of the performances for the samples fabricated under different simulated atmosphere was elucidated.According to the feedback information from the customers,despite the decrease of some performances,the glass produced under oxy-fuel combustion can also fulfill the requirements of the engineering applications.Therefore,the technique of oxy-fuel combustion is worthy to be promoted in glass industry. 展开更多
关键词 oxy-fuel combustion ATMOSPHERE HYDROXYL PERFORMANCE
下载PDF
Effect of Atmosphere on Volatile Emission Characteristic in Oxy-Fuel Combustion
15
作者 Le Wu Shihe Chen Jia Luo 《Energy and Power Engineering》 2013年第2期135-139,共5页
A new type of power supply which was called oxy-fuel combustion power plant was introduced to reduce greenhouse gasses emission. In this paper the volatile emission characteristic of pulverized coal is studied under a... A new type of power supply which was called oxy-fuel combustion power plant was introduced to reduce greenhouse gasses emission. In this paper the volatile emission characteristic of pulverized coal is studied under air atmosphere and oxy-fuel atmosphere. Combustion experiments of Datong bituminous coal were carried out in a wire mesh reactor at heating rates of 1 K/s, 10 K/s and 1000 K/s respectively under air and O2/CO2 atmosphere conditions in order to investigate the volatile emission characteristic. The concentrations of volatile (mainly CO and CH4) emission were on-line measured by infrared gas analyzer. It was indicated that the concentrations of CO and CH4 in O2/CO2 atmosphere were higher than those in air. The direct oxidation of carbon and gasification reaction between carbon and CO2 are the main causes of the increased amount of CO. The higher concentration of CO2 also results in the increased amount of CH4 in O2/CO2 conditions. 展开更多
关键词 oxy-fuel Combustion O2/CO2 ATMOSPHERE VOLATILE Emission GASIFICATION Reaction
下载PDF
Combustion Characteristics and NO Emissions during Co-Combustion of Coal Gangue and Coal Slime in O_(2)/CO_(2) Atmospheres 被引量:1
16
作者 PENG Hao WANG Baofeng +2 位作者 LI Wenxiu YANG Fengling CHENG Fangqin 《Journal of Thermal Science》 SCIE EI CAS CSCD 2023年第1期457-467,共11页
Coal slime has low ash content,and adding coal slime during coal gangue combustion may have influence on combustion character;and at this process,NO will emit,and lead to environmental pollution.O_(2)/CO_(2)atmosphere... Coal slime has low ash content,and adding coal slime during coal gangue combustion may have influence on combustion character;and at this process,NO will emit,and lead to environmental pollution.O_(2)/CO_(2)atmosphere is conducive to NO emission reduction.Thus combustion characteristics and NO emissions during co-combustion of coal gangue and coal slime in O_(2)/CO_(2)atmospheres were studied.The results showed the addition of coal slime increased the combustion activity of the mixed fuels in both air and O_(2)/CO_(2)atmospheres.During co-combustion,there are synergistic effects between them at the fixed carbon combustion stage,and higher blending ratio of coal slime leads to stronger synergistic effect.Furthermore,this study also showed that with the increasing of coal slime blending ratio,the emission concentration of NO increases gradually;with the increase of temperature and O_(2)concentration,the NO emission concentration also gradually increases,and higher O_(2)concentration leads to shorter time required for the complete release of NO.Besides that,the results also demonstrate that the proportion of pyrrole and nitrogen oxide in the ashes increases with the increase of combustion temperature,and pyridine and quaternary nitrogen gradually disappear,while the total nitrogen content in ash decreases with the increase of temperature.The results will contribute to a better understanding of the co-combustion process of coal gangue and coal slime in O_(2)/CO_(2)atmosphere,and provide basic data for the practical industrial application of coal gangue and slime. 展开更多
关键词 coal gangue coal slime O_(2)/CO_(2)atmosphere co-combustion NO emissions
原文传递
Combustion characteristics and synergy behaviors of biomass and coal blending in oxy-fuel conditions: A single particle co-combustion method 被引量:10
17
作者 ZHANG Rui LEI Kai +2 位作者 YE BuQing CAO Jin LIU Dong 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2018年第11期1723-1731,共9页
Co-combustion biomass and coal can effectively reduce the emission of CO_2. O_2/H_2O combustion is regarded as the next generation of oxy-fuel combustion technology. By co-combustion biomass and coal under oxy-fuel co... Co-combustion biomass and coal can effectively reduce the emission of CO_2. O_2/H_2O combustion is regarded as the next generation of oxy-fuel combustion technology. By co-combustion biomass and coal under oxy-fuel condition, the emission of CO_2 can be minimized. This work investigates the co-combustion characteristics of single particles from pine sawdust(PS) and bituminous coal(BC) in O_2/N2, O_2/CO_2 and O_2/H_2O atmospheres at different O_2 mole fractions(21%, 30% and 40%). The experiments were carried out in a drop tube furnace(DTF), and a high speed camera was used to record the combustion process of fuel particles. The combustion temperature was measured by a two-color method. The experiments in O_2/N2 atmosphere indicate that the particles from pine sawdust and bituminous coal all ignite homogeneously. After replacing H_2O for N2, the combustion temperature of volatiles of blended fuel particles decreases, while the combustion temperature of char increases. The ignition delay time in O_2/H_2O atmosphere is shorter than that in O_2/N2 or O_2/CO_2 atmosphere. The combustion temperature of volatiles of blended fuel particles increases as the mass fraction of bituminous coal increases, while the combustion temperature of char of blended fuel particles is higher than that of biomass or bituminous coal. The ignition delay time of blended fuel particles increases with the increasing mass fraction of bituminous coal, and the experimental ignition delay time of blend fuel particles is shorter than the theoretical one. These reveal a synergy during co-combustion process of pine sawdust and bituminous coal. 展开更多
关键词 co-combustion O2/H2O single particle BIOMASS and coal SYNERGY
原文传递
WC基涂层材料和制备工艺对其组织结构与性能的影响 被引量:8
18
作者 石琎 丁翔 +3 位作者 胡一鸣 丁彰雄 肖俊钧 王韶毅 《热喷涂技术》 2015年第2期39-45,共7页
本文采用超音速火焰(HVOF)喷涂工艺制备了二种微米结构WC-10Co-4Cr及一种纳米结构WC-12Co金属陶瓷复合涂层;采用SEM、XRD等分析了涂层的组织结构;测量了涂层的显微硬度、孔隙率及开裂韧性;采用超声振动空蚀装置研究了涂层的抗空蚀性能,... 本文采用超音速火焰(HVOF)喷涂工艺制备了二种微米结构WC-10Co-4Cr及一种纳米结构WC-12Co金属陶瓷复合涂层;采用SEM、XRD等分析了涂层的组织结构;测量了涂层的显微硬度、孔隙率及开裂韧性;采用超声振动空蚀装置研究了涂层的抗空蚀性能,探讨了涂层空蚀机理。结果表明:由燃油型HVOF工艺制备的纳米WC-12Co涂层孔隙率最低,组织最细小,开裂韧性明显高于燃油型和燃气型HVOF工艺制备的微米WC-10Co-4Cr涂层;燃油型HVOF工艺制备的微米结构WC-10Co-4Cr涂层显示了最优异的抗空蚀性能,空蚀率仅为纳米WC-12Co涂层的1/3左右。 展开更多
关键词 WC基涂层 制备工艺 组织结构 涂层性能 超音速火焰喷涂(HVOF) HIGH VELOCITY oxy-fuel spray(HVOF)
下载PDF
Emission characteristics of dioxins,furans and polycyclic aromatic hydrocarbons during fluidized-bed combustion of sewage sludge 被引量:17
19
作者 DENG Wenyi, YAN Jianhua, LI Xiaodong, WANG Fei, CHI Yong, LU ShengyongState Key Laboratory of Clean Energy Utilization, Institute for Thermal Power Engineering, Zhejiang University, Hangzhou 310027, China. 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2009年第12期1747-1752,共6页
Pre-dried sewage sludge with high sulfur content was combusted in an electrically heated lab-scale fluidized-bed incinerator. The emission characteristics of polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinate... Pre-dried sewage sludge with high sulfur content was combusted in an electrically heated lab-scale fluidized-bed incinerator. The emission characteristics of polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs) and polycyclic aromatic hydrocarbons (PAHs) were studied. Coal and calcium oxide (CaO) were added during the sewage sludge combustion tests to optimize combustion conditions and control SO2 emission. The results indicated that the flue gases emitted during mono-combustion of sewage sludge were characterized by relatively high concentrations of SO2, NOx and organic pollutants, due to the high sulfur, nitrogen, and volatile matter content of sewage sludge. The total 16 USEPA priority PAHs and 2,3,7,8-substituted PCDD/Fs produced from sewage sludge combustion were found to be 106.14 μg/m^3 and 8955.93 pg/m^3 in the flue gas, respectively. In the case of cocombustion with coal (msludge/mcoal =1:1), the 16 PAHs and 2,3,7,8-substituted PCDD/Fs concentrations were markedly lower than those found during mono-combustion of sewage sludge. During co-combustion, a suppressant effect of CaO on PCDD/Fs formation was observed. 展开更多
关键词 co-combustion PCDD/FS polycyclic aromatic hydrocarbons (PAHs) sewage sludge
下载PDF
Investigation on Co-Combustion Kinetics of Anthracite and Waste Plastics by Thermogravimetric Analysis 被引量:5
20
作者 LIU Zheng-jian, REN Shan, ZHANG Jian-liang, LIU Wei-jian, XING Xiang-dong, SU Bu-xin (State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing 100083, China) 《Journal of Iron and Steel Research(International)》 SCIE EI CAS CSCD 2012年第10期30-35,共6页
In order to effectively recycle resource for the benefit of the global environment, the utilization of waste plastics as auxiliary injectant for blast furnaces is becoming increasingly important. Combustion kinetics o... In order to effectively recycle resource for the benefit of the global environment, the utilization of waste plastics as auxiliary injectant for blast furnaces is becoming increasingly important. Combustion kinetics of plastics-coal blends with 0, 10%, 20% and 40% waste plastics (WP) are investigated separately by thermogravimetric analysis (TGA) from ambient temperature to 900 ℃ in air atmosphere. These blends are combusted at the heating rates of 5, 10 and 20 ℃/min. The results indicate that, with the increase of waste plastics content, the combustion processes of blends could be divided into one stage, two stages and three stages. The waste plastics content and heating rates have important effects on the main combustion processes of blends. With the increase of waste plastics content, the ignition temperature and the final combustion temperature of blends tend to decrease, while the combustion reaction becomes fiercer. With the increase of the heating rate, the ignition temperature, the mass loss rate of the peaks and the final combustion temperature of blends combustion tend to increase. The Flynn-Wall-Ozawa (FWO) iso-conversional method is used for the kinetic analysis of the main combustion process. The results indicate that, when the waste plastics content varied from 0 to 40%, the values of activation energy increase from 126.05 to 184.12 kJ /mol. 展开更多
关键词 waste plastics ANTHRACITE co-combustion kinetics TGA iso-conversional method
原文传递
上一页 1 2 3 下一页 到第
使用帮助 返回顶部