Aniline,pyrrole and phenanthroline,which have different nitrogen compositions,are used as carbon precursors to synthesize nitrogen-doped ordered mesoporous carbons(NOMCs) by the nanocasting method.The effect of the ...Aniline,pyrrole and phenanthroline,which have different nitrogen compositions,are used as carbon precursors to synthesize nitrogen-doped ordered mesoporous carbons(NOMCs) by the nanocasting method.The effect of the precursor on the resultant NOMC is extensively investigated by nitrogen adsorption-desorption measurements,scanning electron microscopy,X-ray photoelectron spectroscopy(XPS),cyclic voltammetry and rotating ring-disk electrode measurements.Salient findings are as follows.First,the precursor has a significant influence on the specific surface area and textural properties.The NOMC materials derived from pyrrole(C-PY-900:765 m^2/) and phenanthroline(C-Phen-900:746 m^2/) exhibit higher specific surface areas than the aniline analog(C-PA-900:569 m^2/).Second,the XPS results indicate that the total nitrogen content(ca.3.1–3.3 at%) is similar for the three carbon sources,except for a slight difference in the nitrogen configuration.Furthermore,the content of the nitrogen-activated carbon atoms is found to closely depend on the precursor,which is the highest for the phenanthroline-derived carbon.Third,the electrochemical results reveal that the electrocatalytic activity follows in the order C-PA-900 C-PY-900 C-Phen-900,confirming that the nitrogen-activated carbon atoms are the active sites for the oxygen reduction reaction(ORR).In summary,the precursor has considerable influence on the composition and textural properties of the NOMC materials,of which the ORR electrocatalytic activity can be enhanced through optimization of the NOMCs.展开更多
Electrocatalytic oxygen reduction reaction(ORR)is one of the most important reactions in electrochemical energy technologies such as fuel cells and metal–O2/air batteries,etc.However,the essential catalysts to overco...Electrocatalytic oxygen reduction reaction(ORR)is one of the most important reactions in electrochemical energy technologies such as fuel cells and metal–O2/air batteries,etc.However,the essential catalysts to overcome its slow reaction kinetic always undergo a complex dynamic evolution in the actual catalytic process,and the concomitant intermediates and catalytic products also occur continuous conversion and reconstruction.This makes them difficult to be accurately captured,making the identification of ORR active sites and the elucidation of ORR mechanisms difficult.Thus,it is necessary to use extensive in-situ characterization techniques to proceed the real-time monitoring of the catalyst structure and the evolution state of intermediates and products during ORR.This work reviews the major advances in the use of various in-situ techniques to characterize the catalytic processes of various catalysts.Specifically,the catalyst structure evolutions revealed directly by in-situ techniques are systematically summarized,such as phase,valence,electronic transfer,coordination,and spin states varies.In-situ revelation of intermediate adsorption/desorption behavior,and the real-time monitoring of the product nucleation,growth,and reconstruction evolution are equally emphasized in the discussion.Other interference factors,as well as in-situ signal assignment with the aid of theoretical calculations,are also covered.Finally,some major challenges and prospects of in-situ techniques for future catalysts research in the ORR process are proposed.展开更多
The pyrolysis under inert atmosphere has been widely used for the synthesis of metal containing heteroatoms doped carbon materials, versatile catalysts for various reactions. However, it is difficult to prevent metal ...The pyrolysis under inert atmosphere has been widely used for the synthesis of metal containing heteroatoms doped carbon materials, versatile catalysts for various reactions. However, it is difficult to prevent metal nanoparticles aggregation during pyrolysis process. Herein, we reported the efficient synthesis of nitrogen doped carbon hollow nanospheres with cobalt nanoparticles (Co NP, ca. 10nm in size) distributed uniformly in the shell via pyrolysis of yolk-shell structured Zn-Co-ZIFs@polydopamine (PDA). PDA acted as both protection layer and carbon source, which successfully prevented the aggregation of cobalt nanoparticles during high-temperature pyrolysis process. The Co NP and N containing carbon (Co NP/NC) hollow nanospheres were active for both oxygen evolution reaction (OER) and oxygen reduction reaction (ORR), affording overpotential of 430 mV at 10 mA/cm2 for OER in 1 M KOH and comparable half-wave potential to that of Pt/C (0.80V vs RHE) for ORR in 0.1 M KOH. The superior performance of carbon hollow nanospheres for both OER and ORR was mainly attributed to its small metal nanoparticles, N-doping and hollow nanostructure. The protection and confinement effect that originated from PDA coating strategy could be extended to the synthesis of other hollow structured carbon materials, especially the ones with small metal nanoparticles.展开更多
The rotating disk electrode technique is commonly used for screening and characterizing the performance of electrocatalysts for the oxygen reduction reaction(ORR).However,a reliable performance comparison of different...The rotating disk electrode technique is commonly used for screening and characterizing the performance of electrocatalysts for the oxygen reduction reaction(ORR).However,a reliable performance comparison of different electrocatalysts from different labs remains a challenge because of the inconsistency in the measurement of commercial Pt/C.Commercial Pt/C has been adopted extensively as a reference for evaluating the ORR performance of a new electrocatalyst.However,the reported ORR performances of commercial Pt/C from different labs could be significantly different because of multiple factors.Herein,we conducted a meta‐analysis of the ORR performance of commercial Pt/C via data mining of the literature.This revealed the optimal testing conditions for the most repeatable ORR performance,with commercial Pt/C in both acid and alkaline electrolytes;the optimal Pt loading was 20μg/cm^(2) on a 4 mm glassy carbon working electrode.The value of 0.84±0.03 V was suggested as the“Golden reference”of the commercial Pt/C(with Pt 20 wt%)ORR half‐wave potential for the performance evaluation of other ORR catalysts in both acid and alkaline electrolytes.The conclusion obtained through the meta‐analysis was confirmed by experiments.This study provides general guidance for a reliable measurement of the ORR performance of commercial Pt/C as a reference.展开更多
To replace precious metal oxygen reduction reaction(ORR)electrocatalysts,many transition metals and N-doped car-bon composites have been proposed in the last decade resulting in their rapid development as promising no...To replace precious metal oxygen reduction reaction(ORR)electrocatalysts,many transition metals and N-doped car-bon composites have been proposed in the last decade resulting in their rapid development as promising non-precious metal catalysts.We used Ketjenblack carbon as the precursor and mixed it with a polymeric ionic liquid(PIL)of[Hvim]NO_(3) and Fe(NO_(3))_(3),which was thermally calcined at 900℃ to produce a porous FeO_(x),N co-doped carbon material denoted FeO_(x)-N/C.Because the PIL of[Hvim]NO_(3) strongly combines with and disperses Fe^(3+)ions,and NO_(3)−is thermally pyrolyzed to form the porous structure,the FeO_(x)-N/C catalyst has a high electrocatalytic activity for the ORR in both 0.1 mol L^(−1) KOH and 0.5 mol L^(−1) H_(2)SO_(4) electrolytes.It was used as the catalyst to assemble a zinc-air battery,which had a peak power density of 185 mW·cm^(−2).Its superior electrocatalytic activity,wide pH range,and easy preparation make FeO_(x)-N/C a promising electrocatalyst for fuel cells and metal-air batteries.展开更多
Emerging as a prominent area of focus in energy conversion and storage technologies,the development of highly active metal-based single-atom catalysts(SACs)holds great significance in searching alternatives to replace ...Emerging as a prominent area of focus in energy conversion and storage technologies,the development of highly active metal-based single-atom catalysts(SACs)holds great significance in searching alternatives to replace precious metals toward the efficient,stable,and low-cost hydrogen evolution reaction(HER),as well as the oxygen evolution reaction(OER)and the oxygen reduction reaction(ORR).Combining the tremendous tunability of ligand and coordination environment with rich metal-based electrocatalysts can create breakthrough opportunities for achieving both high stability and activity.Herein,we propose a novel and stable holey graphene-like carbon nitride monolayer g-C_(16)N5(N_(4)@g-C_(16)N_(3))stoichiometries interestingly behaving as a natural substrate for constructing SACs((TM-N_(4))@g-C_(16)N_(3)),whose evenly distributed holes map rich and uniform nitrogen coordination positions with electron-rich lone pairs for anchoring transition metal(TM)atoms.Then,we employed density functional theory(DFT)calculations to systematically investigate the electrocatalytic activity of(TM-N_(4))@g-C_(16)N_(3) toward HER/OER/ORR,meanwhile considering the synergistic modulation of H-loading and O-coordination((TM-N_(x)O_(4-x))@g-C_(16)N_(3)^(-)H_(3),x=0–4).Together a“four-step procedure”screening mechanism with the first-principles high-throughput calculations,we find that(Rh-N_(4))and(Ir-N_(2)O_(2)-II)distributed on g-C_(16)N_(3)^(-)H_(3) can modulate the adsorption strength of the adsorbates,thus achieving the best HER/OER/ORR performance among 216 candidates,and the lowest overpotential of 0.098/0.3/0.46 V and 0.06/0.48/0.45 V,respectively.Additionally,the d-band center,crystal orbital Hamilton population(COHP),and molecular orbitals are used to reveal the OER/ORR activity source.Particularly,the Rh/Ir-d orbital is dramatically hybridized with the O-p orbital of the oxygenated adsorbates,so that the lone-electrons incipiently locate at the antibonding orbital pair up and populate the downward bonding orbital,allowing oxygenated intermediates to be adsorbed onto(TM-N_(x)O_(4-x))@g-C_(16)N_(3)^(-)H_(3) appropriately.展开更多
The importance of the oxygen reduction reaction (ORR) in fuel cells and zinc-air batteries is self-evident, and effective catalysts could significantly improve the catalytic efficiency of ORR. Single-atom catalysts ar...The importance of the oxygen reduction reaction (ORR) in fuel cells and zinc-air batteries is self-evident, and effective catalysts could significantly improve the catalytic efficiency of ORR. Single-atom catalysts are gaining increasing interest due to their high atom efficiency and effective catalytic performance compared to other catalyst types. While the optimal loading of catalytic sites in single-atom catalysts significantly influences their catalytic efficiency. However, creating stable single-atom catalysts with high-loading remains a difficult task. Therefore, we showcase and describe the latest developments in techniques for producing single-atom catalysts with high-loadings. In addition, the performance of noble metal, non-precious metal, and diatomic catalysts in ORR processes is summarized. What’s more, the key difficulties and opportunities in the sector are demonstrated by examining the synthesis techniques and evaluating the performance and structure. This review will help researchers to advance the research process of high-loading single-atom catalysts and accelerate their practical application in the field of ORR research.展开更多
The introduction of defects can adjust the activity of graphene-based single-atom catalysts for oxygen reduction reactions(ORR).Herein,we for the first time investigate the ORR catalytic activity of FeN_(4)sites embed...The introduction of defects can adjust the activity of graphene-based single-atom catalysts for oxygen reduction reactions(ORR).Herein,we for the first time investigate the ORR catalytic activity of FeN_(4)sites embedded on graphene with four types of line-defective boundary via density functional theory calculations.Our results show that periodic line defects consisting of pentagon-pentagon-octagon(C_(585))or quad-octagon chains(C_(484))can significantly enhance ORR activity,owing to the optimized electronic structures of FeN_(4)sites.The spin magnetic moment and the valence state of the Fe atom are both well correlated with the ORR overpotential.Experimental investigations further corroborate that FeN_(4)with a high degree of defects exhibits better ORR activity and stability compared to FeN_(4)sites of pristine graphene and commercial Pt/C.This work unravels the influence of the periodic defect boundary on the ORR performance of Fe-N-C catalysts and paves the way towards the rational design of highly effective single-atom electrocatalysts.展开更多
Noble metals, such as platinum, ruthenium and iridium‐group metals, are often used as oxygen reduction or evolution reaction (ORR/OER) electrocatalysts. To reduce the cost and provide an application of bifunctional...Noble metals, such as platinum, ruthenium and iridium‐group metals, are often used as oxygen reduction or evolution reaction (ORR/OER) electrocatalysts. To reduce the cost and provide an application of bifunctional catalysis, in this work, cobalt oxide supported on nitrogen and phospho‐rus co‐doped carbon (Co3O4/NPC) was fabricated and examined as a bifunctional electrocatalyst for OER and ORR. To prepare Co3O4/NPC, NPC was pyrolyzed from melamine and phytic acid support‐ed on carbon, followed by the solvothermal synthesis of Co3O4 on NPC. Linear sweep voltammetry was used to evaluate the activity for OER and ORR. For OER, Co3O4/NPC showed an onset potential of 0.54 V (versus the saturated calomel electrode) and a current density of 21.95 mA/cm2 at 0.80 V, which was better than both Co3O4/C and NPC. The high activity of Co3O4/NPC was attributed to a synergistic effect of the N, P co‐dopants and Co3O4. For ORR, Co3O4/NPC exhibited an activity close to commercial Pt/C in terms of the diffusion limited current density (–4.49 vs–4.76 mA/cm2 at–0.80 V), and Co3O4 played the key role for the catalysis. Chronoamperometry (current versus time) was used to evaluate the stability, which showed that Co3O4/NPC maintained 46%current after the chronoamperometry test for OER and 95% current for ORR. Overall, Co3O4/NPC exhibited high activity and improved stability for both OER and ORR.展开更多
Atomically dispersed catalysts exhibit significant influence on facilitating the sluggish oxygen reduction reaction(ORR)kinetics with high atom economy,owing to remarkable attributes including nearly 100%atomic utiliz...Atomically dispersed catalysts exhibit significant influence on facilitating the sluggish oxygen reduction reaction(ORR)kinetics with high atom economy,owing to remarkable attributes including nearly 100%atomic utilization and exceptional catalytic functionality.Furthermore,accurately controlling atomic physical properties including spin,charge,orbital,and lattice degrees of atomically dispersed catalysts can realize the optimized chemical properties including maximum atom utilization efficiency,homogenous active centers,and satisfactory catalytic performance,but remains elusive.Here,through physical and chemical insight,we review and systematically summarize the strategies to optimize atomically dispersed ORR catalysts including adjusting the atomic coordination environment,adjacent electronic orbital and site density,and the choice of dual-atom sites.Then the emphasis is on the fundamental understanding of the correlation between the physical property and the catalytic behavior for atomically dispersed catalysts.Finally,an overview of the existing challenges and prospects to illustrate the current obstacles and potential opportunities for the advancement of atomically dispersed catalysts in the realm of electrocatalytic reactions is offered.展开更多
The emerging of single-atom catalysts(SACs)offers a great opportunity for the development of advanced energy storage and conversion devices due to their excellent activity and durability,but the actual mass production...The emerging of single-atom catalysts(SACs)offers a great opportunity for the development of advanced energy storage and conversion devices due to their excellent activity and durability,but the actual mass production of high-loading SACs is still challenging.Herein,a facile and green boron acid(H_(3)BO_(3))-assisted pyrolysis strategy is put forward to synthesize SACs by only using chitosan,cobalt salt and H_(3)BO_(3)as precursor,and the effect of H_(3)BO_(3)is deeply investigated.The results show that molten boron oxide derived from H_(3)BO_(3)as ideal high-temperature carbonization media and blocking media play important role in the synthesis process.As a result,the acquired Co/N/B tri-doped porous carbon framework(Co-N-B-C)not only presents hierarchical porous structure,large specific surface area and abundant carbon edges but also possesses high-loading single Co atom(4.2 wt.%),thus giving rise to outstanding oxygen catalytic performance.When employed as a catalyst for air cathode in Zn-air batteries,the resultant Co-N-B-C catalyst shows remarkable power density and long-term stability.Clearly,our work gains deep insight into the role of H_(3)BO_(3)and provides a new avenue to synthesis of high-performance SACs.展开更多
The long-range periodically ordered atomic structures in intermetallic nanoparticles(INPs)can significantly enhance both the electrocatalytic activity and electrochemical stability toward the oxygen reduction reaction...The long-range periodically ordered atomic structures in intermetallic nanoparticles(INPs)can significantly enhance both the electrocatalytic activity and electrochemical stability toward the oxygen reduction reaction(ORR)compared to the disordered atomic structures in ordinary solid-solution alloy NPs.Accordingly,through a facile and scalable synthetic method,a series of carbon-supported ultrafine Pt_3Co_(x)Mn_(1-x)ternary INPs are prepared in this work,which possess the"skin-like"ultrathin Pt shells,the ordered L1_(2) atomic structure,and the high-even dispersion on supports(L1_(2)-Pt_3Co_(x)Mn_(1-x)/~SPt INPs/C).Electrochemical results present that the composition-optimized L1_(2)-Pt_3Co_(0.7)Mn_(0.3)/~SPt INPs/C exhibits the highest electrocata lytic activity among the series,which are also much better than those of the pristine ultrafine Pt/C.Besides,it also has a greatly enhanced electrochemical stability.In addition,the effects of annealing temperature and time are further investigated.More importantly,such superior ORR electrocatalytic performance of L1_(2)-Pt_3Co_(0.7)Mn_(0.3)/~SPt INPs/C are also well demonstrated in practical fuel cells.Physicochemical characterization analyses further reveal the major origins of the greatly enhanced ORR electrocata lytic performance:the Pt-Co-Mn alloy-induced geometric and ligand effects as well as the extremely high L1_(2) atomic-ordering degree.This work not only successfully develops a highly active and stable ordered ternary intermetallic ORR electrocatalyst,but also elucidates the corresponding"structure-function"relationship,which can be further applied in designing other intermetallic(electro)catalysts.展开更多
Metal-organic frameworks recently have been burgeoning and used as precursors to obtain various metal-nitrogen-carbon catalysts for oxygen reduction reaction(ORR).Although rarely studied,Mn-N-C is a promising catalyst...Metal-organic frameworks recently have been burgeoning and used as precursors to obtain various metal-nitrogen-carbon catalysts for oxygen reduction reaction(ORR).Although rarely studied,Mn-N-C is a promising catalyst for ORR due to its weak Fenton reaction activity and strong graphitization catalysis.Here,we developed a facile strategy for anchoring the atomically dispersed nitrogen-coordinated single Mn sites on carbon nanosheets(MnNCS)from an Mn-hexamine coordination framework.The atomically dispersed Mn-N_(4) sites were dispersed on ultrathin carbon nanosheets with a hierarchically porous structure.The optimized MnNCS displayed an excellent ORR performance in half-cells(0.89 V vs.reversible hydrogen electrode(RHE)in base and 0.76 V vs.RHE in acid in half-wave potential)and Zn-air batteries(233 mW cm^(−2)in peak power density),along with significantly enhanced stability.Density functional theory calculations further corroborated that the Mn-N_(4)-C(12)site has favorable adsorption of*OH as the rate-determining step.These findings demonstrate that the metal-hexamine coordination framework can be used as a model system for the rational design of highly active atomic metal catalysts for energy applications.展开更多
The application of direct methanol fuel cells (DMFC) is hampered by high cost, low activity, and poor CO tolerance by the Pt catalyst. Herein, we designed a fancy 3D hybrid by anchoring tungsten nitride (WN) nanop...The application of direct methanol fuel cells (DMFC) is hampered by high cost, low activity, and poor CO tolerance by the Pt catalyst. Herein, we designed a fancy 3D hybrid by anchoring tungsten nitride (WN) nanoparticles (NPs), of about 3 nm in size, into a 3D carbon nanotube-reduced graphene oxide framework (CNT-rGO) using an assembly route. After depositing Pt, the contacted and strongly coupled Pt-WN NPs were formed, resulting in electron transfer from Pt to WN. The 3D Pt-WN/CNT-rGO hybrid can be used as a bifunctional electrocatalyst for both methanol oxidation reaction (MOR) and oxygen reduction reaction (ORR). In MOR, the catalysts showed excellent CO tolerance and a high mass activity of 702.4 mA.mgpt-1, 2.44 and 3.81 times higher than those of Pt/CNT-rGO and Pt/C(JM) catalysts, respectively. The catalyst also exhibited a more positive onset potential (1.03 V), higher mass activity (151.3 mA.mgpt-1), and better cyclic stability and tolerance in MOR than ORR. The catalyst mainly exhibited a 4e-transfer mechanism with a low peroxide yield. The high activity was closely related to hybrid structure. That is, the 3D framework provided a favorable path for mass-transfer, the CNT-rGO support was favorable for charge transfer, and strongly coupled Pt-WN can enhance the catalytic activity and CO-tolerance of Pt. Pt-WN/CNT-rGO represents a new 3D catalytic platform that is promising as an electrocatalyst for DMFC because it can catalyze both ORR and MOR in an acidic medium with good stability and highly efficient Pt utilization.展开更多
The development of cost-effective oxygen reduction reaction (ORR) catalysts with a high methanol tolerance and enhanced durability is highly desirable for direct methanol fuel cells. This work focuses on the convers...The development of cost-effective oxygen reduction reaction (ORR) catalysts with a high methanol tolerance and enhanced durability is highly desirable for direct methanol fuel cells. This work focuses on the conversion of PtNi nanoparticles from a disordered solid solution to an ordered intermetallic compound. Here the effect of this conversion on ORR activity, durability, and methanol tolerance are characterized. X-ray diffraction and transmission electron microscopy results confirm the formation of ordered PtNi intermetallic nanoparticles with high dispersion and a mean particle size of about 7.6 nm. The PtNi intermetallic nanoparticles exhibited enhanced mass and specific activities toward the methanol-tolerant ORR in pure and methanol-containing electrolytes. The specific activity of the ORR at 0.85 V on the PtNi intermetallic nanoparticles is almost 6 times greater than on commercial Pt/C and 3 times greater than on disordered PtNi alloy. Durability tests indicated a minimal loss of ORR activity for PtNi intermetallic nanoparticles after 5,000 potential cycles, whereas the ORR activity decreased by 28% for disordered PtNi alloy. The enhanced methanoltolerant ORR activity and durability may be attributed to the structural and compositional stabilities of the ordered PtNi intermetallic nanoparticles compared relative to the stabilities of the disordered PtNi alloy, strongly suggesting that the PtNi intermetallic nanoparticles may serve as highly active and durable methanol-tolerant ORR electrocatalysts for practical applications.展开更多
The demand for efficient and environmentally-benign electrocatalysts that help availably harness the renewable energy resources is growing rapidly. In recent years, increasing insights into the design of water electro...The demand for efficient and environmentally-benign electrocatalysts that help availably harness the renewable energy resources is growing rapidly. In recent years, increasing insights into the design of water electrolysers, fuel cells, and metal–air batteries emerge in response to the need for developing sustainable energy carriers, in which the oxygen evolution reaction and the oxygen reduction reaction play key roles. However, both reactions suffer from sluggish kinetics that restricts the reactivity. Therefore, it is vital to probe into the structure of the catalysts to exploit high-performance bifunctional oxygen electrocatalysts. Spinel-type catalysts are a class of materials with advantages of versatility, low toxicity, low expense, high abundance, flexible ion arrangement, and multivalence structure. In this review, we afford a basic overview of spinel-type materials and then introduce the relevant theoretical principles for electrocatalytic activity, following that we shed light on the structure–property relationship strategies for spinel-type catalysts including electronic structure, microstructure, phase and composition regulation,and coupling with electrically conductive supports. We elaborate the relationship between structure and property, in order to provide some insights into the design of spinel-type bifunctional oxygen electrocatalysts.展开更多
Pt based materials are the most efficient electrocatalysts for the oxygen reduction reaction(ORR)and methanol oxidation reaction(MOR)in fuel cells.Maximizing the utilization of Pt based materials by modulating their m...Pt based materials are the most efficient electrocatalysts for the oxygen reduction reaction(ORR)and methanol oxidation reaction(MOR)in fuel cells.Maximizing the utilization of Pt based materials by modulating their morphologies to expose more active sites is a fundamental objective for the practical application of fuel cells.Herein,we report a new class of hierarchically skeletal Pt-Ni nanocrystals(HSNs)with a multi-layered structure,prepared by an inorganic acid-induced solvothermal method.The addition of H_(2)SO_(4)to the synthetic protocol provides a critical trigger for the successful growth of Pt-Ni nanocrystals with the desired structure.The Pt-Ni HSNs synthesized by this method exhibit enhanced mass activity of 1.25 A mgpt−1 at 0.9 V(versus the reversible hydrogen electrode)towards ORR in 0.1-M HClO_(4),which is superior to that of Pt-Ni multi-branched nanocrystals obtained by the same method in the absence of inorganic acid;it is additionally 8.9-fold higher than that of the commercial Pt/C catalyst.Meanwhile,it displays enhanced stability,with only 21.6%mass activity loss after 10,000 cycles(0.6–1.0 V)for ORR.Furthermore,the Pt-Ni HSNs show enhanced activity and anti-toxic ability in CO for MOR.The superb activity of the Pt-Ni HSNs for ORR and MOR is fully attributed to an extensively exposed electrochemical surface area and high intrinsic activity,induced by strain effects,provided by the unique hierarchically skeletal alloy structure.The novel open and hierarchical structure of Pt-Ni alloy provides a promising approach for significant improvements of the activity of Pt based alloy electrocatalysts.展开更多
The development of highly efficient and earth-abundant oxygen evolution/ reduction reaction (OER/ORR) catalysts is essential for rechargeable metal-air batteries. Herein, cobalt-based hydroxide nanoparticles @ N-dop...The development of highly efficient and earth-abundant oxygen evolution/ reduction reaction (OER/ORR) catalysts is essential for rechargeable metal-air batteries. Herein, cobalt-based hydroxide nanoparticles @ N-doping carbonic framework (CoOHCat@NCF) core-shell structures have been designed as highly stable and efficient OER/ORR bifunctional catalysts. The obtained composite shows enhanced catalytic activities and excellent stability in alkaline media. In the OER, a high turnover frequency (2.03 s^-1 at an overpotential of 0.36 V), low overpotential at high current density (100 mA.cm-2 requiring an overpotential of 0.38 V), and excellent stability (100 mA·cm^-2 for one week with no activity loss) have been achieved. Furthermore, although cobalt species-based catalysts are known as good ORR catalysts, their hybridization with NCF obtained from metal organic frameworks successfully enhanced their ORR activities. The efficient activity of CoOHCat@NCF as a bifunctional oxygen electrocatalyst can be ascribed to the core-shell structures stabilizing the active catalytic sites and the porous shell structure favoring electrocatalysis-related mass transport.展开更多
The development of highly active and low-cost catalysts for electrochemical reactions is one of the most attractive topics in the renewable energy technology.Herein,the site-specific nitrogen doping of graphdiyne(GDY)...The development of highly active and low-cost catalysts for electrochemical reactions is one of the most attractive topics in the renewable energy technology.Herein,the site-specific nitrogen doping of graphdiyne(GDY)including grap-N,sp-N(Ⅰ)and sp-N(Ⅱ)GDY is systematically investigated as metal-free oxygen reduction electrocatalysts via density functional theory(DFT).Our results indicate that the doped nitrogen atom can significantly improve the oxygen(O2)adsorption activity of GDY through activating its neighboring carbon atoms.The free-energy landscape is employed to describe the electrochemical oxygen reduction reaction(ORR)in both O2 dissociation and association mechanisms.It is revealed that the association mechanism can provide higher ORR onset potential than dissociation mechanism on most of the substrates.Especially,sp-N(Ⅱ)GDY exhibits the highest ORR electrocatalytic activity through increasing the theoretical onset potential to 0.76 V.This work provides an atomic-level insight for the electrochemical ORR mechanism on metal-free N-doped GDY.展开更多
Fe-N-C catalysts are widely considered as promising non-precious-metal candidates for electrocatalytic oxygen reduction reaction(ORR),Yet despite their high catalytic activity through rational modulation,challenges re...Fe-N-C catalysts are widely considered as promising non-precious-metal candidates for electrocatalytic oxygen reduction reaction(ORR),Yet despite their high catalytic activity through rational modulation,challenges remain in their low site density and unsatisfactory mass transfer structure.Herein,we present a structural engineering approach employing a soft-template coating strategy to fabricate a hollow and hierarchically porous N-doped carbon framework anchored with atomically dispersed Fe sites(FeNCh) as an efficient ORR catalyst.The combination of hierarchical porosity and high exterior surface area is proven crucial for exposing more active sites,which gives rise to a remarkable ORR performance with a half-wave potential of 0.902 V in 0.1 m KOH and 0.814 V in 0.1 m HClO_(4),significantly outperforming its counterpart with solid structure and dominance of micropores(FeNC-s).The mass transfer property is revealed by in-situ electrochemical impedance spectroscopy(EIS) measurement.The distribution of relaxation time(DRT) analysis is further introduced to deconvolve the kinetic and mass transport processes,which demonstrates an alleviated mass transport resistance for FeNC-h,validating the effectiveness of structural engineering.This work not only provides an effective structural engineering approach but also contributes to the comprehensive mass transfer evaluation on advanced electrocatalyst for energy conversion applications.展开更多
基金supported by the National Natural Science Foundation of China(21476087,21576101)the Innovation Project of Guangdong Department of Education(2014KTSCX016)+1 种基金the Science&Technology Research Project of Guangdong Province(2013B010405005,2014A010105041)the Fundamental Research Funds for the Central Universities~~
文摘Aniline,pyrrole and phenanthroline,which have different nitrogen compositions,are used as carbon precursors to synthesize nitrogen-doped ordered mesoporous carbons(NOMCs) by the nanocasting method.The effect of the precursor on the resultant NOMC is extensively investigated by nitrogen adsorption-desorption measurements,scanning electron microscopy,X-ray photoelectron spectroscopy(XPS),cyclic voltammetry and rotating ring-disk electrode measurements.Salient findings are as follows.First,the precursor has a significant influence on the specific surface area and textural properties.The NOMC materials derived from pyrrole(C-PY-900:765 m^2/) and phenanthroline(C-Phen-900:746 m^2/) exhibit higher specific surface areas than the aniline analog(C-PA-900:569 m^2/).Second,the XPS results indicate that the total nitrogen content(ca.3.1–3.3 at%) is similar for the three carbon sources,except for a slight difference in the nitrogen configuration.Furthermore,the content of the nitrogen-activated carbon atoms is found to closely depend on the precursor,which is the highest for the phenanthroline-derived carbon.Third,the electrochemical results reveal that the electrocatalytic activity follows in the order C-PA-900 C-PY-900 C-Phen-900,confirming that the nitrogen-activated carbon atoms are the active sites for the oxygen reduction reaction(ORR).In summary,the precursor has considerable influence on the composition and textural properties of the NOMC materials,of which the ORR electrocatalytic activity can be enhanced through optimization of the NOMCs.
基金the National Natural Science Foundation of China(No.52072256)Shanxi Science and Technology Major Project(No.20201101016)+1 种基金Key R&D program of Shanxi Province(No.202102030201006)Research Project Supported by Shanxi Scholarship Council of China(HGKY2019031).
文摘Electrocatalytic oxygen reduction reaction(ORR)is one of the most important reactions in electrochemical energy technologies such as fuel cells and metal–O2/air batteries,etc.However,the essential catalysts to overcome its slow reaction kinetic always undergo a complex dynamic evolution in the actual catalytic process,and the concomitant intermediates and catalytic products also occur continuous conversion and reconstruction.This makes them difficult to be accurately captured,making the identification of ORR active sites and the elucidation of ORR mechanisms difficult.Thus,it is necessary to use extensive in-situ characterization techniques to proceed the real-time monitoring of the catalyst structure and the evolution state of intermediates and products during ORR.This work reviews the major advances in the use of various in-situ techniques to characterize the catalytic processes of various catalysts.Specifically,the catalyst structure evolutions revealed directly by in-situ techniques are systematically summarized,such as phase,valence,electronic transfer,coordination,and spin states varies.In-situ revelation of intermediate adsorption/desorption behavior,and the real-time monitoring of the product nucleation,growth,and reconstruction evolution are equally emphasized in the discussion.Other interference factors,as well as in-situ signal assignment with the aid of theoretical calculations,are also covered.Finally,some major challenges and prospects of in-situ techniques for future catalysts research in the ORR process are proposed.
文摘The pyrolysis under inert atmosphere has been widely used for the synthesis of metal containing heteroatoms doped carbon materials, versatile catalysts for various reactions. However, it is difficult to prevent metal nanoparticles aggregation during pyrolysis process. Herein, we reported the efficient synthesis of nitrogen doped carbon hollow nanospheres with cobalt nanoparticles (Co NP, ca. 10nm in size) distributed uniformly in the shell via pyrolysis of yolk-shell structured Zn-Co-ZIFs@polydopamine (PDA). PDA acted as both protection layer and carbon source, which successfully prevented the aggregation of cobalt nanoparticles during high-temperature pyrolysis process. The Co NP and N containing carbon (Co NP/NC) hollow nanospheres were active for both oxygen evolution reaction (OER) and oxygen reduction reaction (ORR), affording overpotential of 430 mV at 10 mA/cm2 for OER in 1 M KOH and comparable half-wave potential to that of Pt/C (0.80V vs RHE) for ORR in 0.1 M KOH. The superior performance of carbon hollow nanospheres for both OER and ORR was mainly attributed to its small metal nanoparticles, N-doping and hollow nanostructure. The protection and confinement effect that originated from PDA coating strategy could be extended to the synthesis of other hollow structured carbon materials, especially the ones with small metal nanoparticles.
文摘The rotating disk electrode technique is commonly used for screening and characterizing the performance of electrocatalysts for the oxygen reduction reaction(ORR).However,a reliable performance comparison of different electrocatalysts from different labs remains a challenge because of the inconsistency in the measurement of commercial Pt/C.Commercial Pt/C has been adopted extensively as a reference for evaluating the ORR performance of a new electrocatalyst.However,the reported ORR performances of commercial Pt/C from different labs could be significantly different because of multiple factors.Herein,we conducted a meta‐analysis of the ORR performance of commercial Pt/C via data mining of the literature.This revealed the optimal testing conditions for the most repeatable ORR performance,with commercial Pt/C in both acid and alkaline electrolytes;the optimal Pt loading was 20μg/cm^(2) on a 4 mm glassy carbon working electrode.The value of 0.84±0.03 V was suggested as the“Golden reference”of the commercial Pt/C(with Pt 20 wt%)ORR half‐wave potential for the performance evaluation of other ORR catalysts in both acid and alkaline electrolytes.The conclusion obtained through the meta‐analysis was confirmed by experiments.This study provides general guidance for a reliable measurement of the ORR performance of commercial Pt/C as a reference.
文摘To replace precious metal oxygen reduction reaction(ORR)electrocatalysts,many transition metals and N-doped car-bon composites have been proposed in the last decade resulting in their rapid development as promising non-precious metal catalysts.We used Ketjenblack carbon as the precursor and mixed it with a polymeric ionic liquid(PIL)of[Hvim]NO_(3) and Fe(NO_(3))_(3),which was thermally calcined at 900℃ to produce a porous FeO_(x),N co-doped carbon material denoted FeO_(x)-N/C.Because the PIL of[Hvim]NO_(3) strongly combines with and disperses Fe^(3+)ions,and NO_(3)−is thermally pyrolyzed to form the porous structure,the FeO_(x)-N/C catalyst has a high electrocatalytic activity for the ORR in both 0.1 mol L^(−1) KOH and 0.5 mol L^(−1) H_(2)SO_(4) electrolytes.It was used as the catalyst to assemble a zinc-air battery,which had a peak power density of 185 mW·cm^(−2).Its superior electrocatalytic activity,wide pH range,and easy preparation make FeO_(x)-N/C a promising electrocatalyst for fuel cells and metal-air batteries.
基金supported by the National Natural Science Foundation of China(No.21905175).
文摘Emerging as a prominent area of focus in energy conversion and storage technologies,the development of highly active metal-based single-atom catalysts(SACs)holds great significance in searching alternatives to replace precious metals toward the efficient,stable,and low-cost hydrogen evolution reaction(HER),as well as the oxygen evolution reaction(OER)and the oxygen reduction reaction(ORR).Combining the tremendous tunability of ligand and coordination environment with rich metal-based electrocatalysts can create breakthrough opportunities for achieving both high stability and activity.Herein,we propose a novel and stable holey graphene-like carbon nitride monolayer g-C_(16)N5(N_(4)@g-C_(16)N_(3))stoichiometries interestingly behaving as a natural substrate for constructing SACs((TM-N_(4))@g-C_(16)N_(3)),whose evenly distributed holes map rich and uniform nitrogen coordination positions with electron-rich lone pairs for anchoring transition metal(TM)atoms.Then,we employed density functional theory(DFT)calculations to systematically investigate the electrocatalytic activity of(TM-N_(4))@g-C_(16)N_(3) toward HER/OER/ORR,meanwhile considering the synergistic modulation of H-loading and O-coordination((TM-N_(x)O_(4-x))@g-C_(16)N_(3)^(-)H_(3),x=0–4).Together a“four-step procedure”screening mechanism with the first-principles high-throughput calculations,we find that(Rh-N_(4))and(Ir-N_(2)O_(2)-II)distributed on g-C_(16)N_(3)^(-)H_(3) can modulate the adsorption strength of the adsorbates,thus achieving the best HER/OER/ORR performance among 216 candidates,and the lowest overpotential of 0.098/0.3/0.46 V and 0.06/0.48/0.45 V,respectively.Additionally,the d-band center,crystal orbital Hamilton population(COHP),and molecular orbitals are used to reveal the OER/ORR activity source.Particularly,the Rh/Ir-d orbital is dramatically hybridized with the O-p orbital of the oxygenated adsorbates,so that the lone-electrons incipiently locate at the antibonding orbital pair up and populate the downward bonding orbital,allowing oxygenated intermediates to be adsorbed onto(TM-N_(x)O_(4-x))@g-C_(16)N_(3)^(-)H_(3) appropriately.
基金supported by the Natural Science Foundation of Shandong Province(No.ZR2021QB150)Research Program of Qilu Institute of Technology(Nos.QIT23TP019,QIT23TP010,and QIT22NK005).
文摘The importance of the oxygen reduction reaction (ORR) in fuel cells and zinc-air batteries is self-evident, and effective catalysts could significantly improve the catalytic efficiency of ORR. Single-atom catalysts are gaining increasing interest due to their high atom efficiency and effective catalytic performance compared to other catalyst types. While the optimal loading of catalytic sites in single-atom catalysts significantly influences their catalytic efficiency. However, creating stable single-atom catalysts with high-loading remains a difficult task. Therefore, we showcase and describe the latest developments in techniques for producing single-atom catalysts with high-loadings. In addition, the performance of noble metal, non-precious metal, and diatomic catalysts in ORR processes is summarized. What’s more, the key difficulties and opportunities in the sector are demonstrated by examining the synthesis techniques and evaluating the performance and structure. This review will help researchers to advance the research process of high-loading single-atom catalysts and accelerate their practical application in the field of ORR research.
文摘The introduction of defects can adjust the activity of graphene-based single-atom catalysts for oxygen reduction reactions(ORR).Herein,we for the first time investigate the ORR catalytic activity of FeN_(4)sites embedded on graphene with four types of line-defective boundary via density functional theory calculations.Our results show that periodic line defects consisting of pentagon-pentagon-octagon(C_(585))or quad-octagon chains(C_(484))can significantly enhance ORR activity,owing to the optimized electronic structures of FeN_(4)sites.The spin magnetic moment and the valence state of the Fe atom are both well correlated with the ORR overpotential.Experimental investigations further corroborate that FeN_(4)with a high degree of defects exhibits better ORR activity and stability compared to FeN_(4)sites of pristine graphene and commercial Pt/C.This work unravels the influence of the periodic defect boundary on the ORR performance of Fe-N-C catalysts and paves the way towards the rational design of highly effective single-atom electrocatalysts.
基金supported by the National Natural Science Foundation of China (21375016,20475022 and 21505019)~~
文摘Noble metals, such as platinum, ruthenium and iridium‐group metals, are often used as oxygen reduction or evolution reaction (ORR/OER) electrocatalysts. To reduce the cost and provide an application of bifunctional catalysis, in this work, cobalt oxide supported on nitrogen and phospho‐rus co‐doped carbon (Co3O4/NPC) was fabricated and examined as a bifunctional electrocatalyst for OER and ORR. To prepare Co3O4/NPC, NPC was pyrolyzed from melamine and phytic acid support‐ed on carbon, followed by the solvothermal synthesis of Co3O4 on NPC. Linear sweep voltammetry was used to evaluate the activity for OER and ORR. For OER, Co3O4/NPC showed an onset potential of 0.54 V (versus the saturated calomel electrode) and a current density of 21.95 mA/cm2 at 0.80 V, which was better than both Co3O4/C and NPC. The high activity of Co3O4/NPC was attributed to a synergistic effect of the N, P co‐dopants and Co3O4. For ORR, Co3O4/NPC exhibited an activity close to commercial Pt/C in terms of the diffusion limited current density (–4.49 vs–4.76 mA/cm2 at–0.80 V), and Co3O4 played the key role for the catalysis. Chronoamperometry (current versus time) was used to evaluate the stability, which showed that Co3O4/NPC maintained 46%current after the chronoamperometry test for OER and 95% current for ORR. Overall, Co3O4/NPC exhibited high activity and improved stability for both OER and ORR.
基金supported by the National Natural Science Foundation of China(22234005,21974070)the Natural Science Foundation of Jiangsu Province(BK20222015)。
文摘Atomically dispersed catalysts exhibit significant influence on facilitating the sluggish oxygen reduction reaction(ORR)kinetics with high atom economy,owing to remarkable attributes including nearly 100%atomic utilization and exceptional catalytic functionality.Furthermore,accurately controlling atomic physical properties including spin,charge,orbital,and lattice degrees of atomically dispersed catalysts can realize the optimized chemical properties including maximum atom utilization efficiency,homogenous active centers,and satisfactory catalytic performance,but remains elusive.Here,through physical and chemical insight,we review and systematically summarize the strategies to optimize atomically dispersed ORR catalysts including adjusting the atomic coordination environment,adjacent electronic orbital and site density,and the choice of dual-atom sites.Then the emphasis is on the fundamental understanding of the correlation between the physical property and the catalytic behavior for atomically dispersed catalysts.Finally,an overview of the existing challenges and prospects to illustrate the current obstacles and potential opportunities for the advancement of atomically dispersed catalysts in the realm of electrocatalytic reactions is offered.
基金supported by National Natural Science Foundation of China(Nos.52274298,51974114,51672075 and 21908049)China Postdoctoral Science Foundation(2020M682560)+4 种基金International Postdoctoral Exchange Fel owship Program(Grant No.PC2022020)Science&Technology innovation program of Hunan province(2020RC2024 and 2022RC3037)Hunan Provincial Natural Science Foundation of China(No.2020JJ4175)Science&Technology talents lifting project of Hunan Province(No.2022TJ-N16)Scientific Research Fund of Hunan Provincial Education Department(No.21A0392)
文摘The emerging of single-atom catalysts(SACs)offers a great opportunity for the development of advanced energy storage and conversion devices due to their excellent activity and durability,but the actual mass production of high-loading SACs is still challenging.Herein,a facile and green boron acid(H_(3)BO_(3))-assisted pyrolysis strategy is put forward to synthesize SACs by only using chitosan,cobalt salt and H_(3)BO_(3)as precursor,and the effect of H_(3)BO_(3)is deeply investigated.The results show that molten boron oxide derived from H_(3)BO_(3)as ideal high-temperature carbonization media and blocking media play important role in the synthesis process.As a result,the acquired Co/N/B tri-doped porous carbon framework(Co-N-B-C)not only presents hierarchical porous structure,large specific surface area and abundant carbon edges but also possesses high-loading single Co atom(4.2 wt.%),thus giving rise to outstanding oxygen catalytic performance.When employed as a catalyst for air cathode in Zn-air batteries,the resultant Co-N-B-C catalyst shows remarkable power density and long-term stability.Clearly,our work gains deep insight into the role of H_(3)BO_(3)and provides a new avenue to synthesis of high-performance SACs.
基金supported by the National Key Research and Development Program of China(2021YFB4001301)the Science and Technology Commission of Shanghai Municipality(21DZ1208600)the Oceanic Interdisciplinary Program of Shanghai Jiao Tong University(SL2021ZD105)。
文摘The long-range periodically ordered atomic structures in intermetallic nanoparticles(INPs)can significantly enhance both the electrocatalytic activity and electrochemical stability toward the oxygen reduction reaction(ORR)compared to the disordered atomic structures in ordinary solid-solution alloy NPs.Accordingly,through a facile and scalable synthetic method,a series of carbon-supported ultrafine Pt_3Co_(x)Mn_(1-x)ternary INPs are prepared in this work,which possess the"skin-like"ultrathin Pt shells,the ordered L1_(2) atomic structure,and the high-even dispersion on supports(L1_(2)-Pt_3Co_(x)Mn_(1-x)/~SPt INPs/C).Electrochemical results present that the composition-optimized L1_(2)-Pt_3Co_(0.7)Mn_(0.3)/~SPt INPs/C exhibits the highest electrocata lytic activity among the series,which are also much better than those of the pristine ultrafine Pt/C.Besides,it also has a greatly enhanced electrochemical stability.In addition,the effects of annealing temperature and time are further investigated.More importantly,such superior ORR electrocatalytic performance of L1_(2)-Pt_3Co_(0.7)Mn_(0.3)/~SPt INPs/C are also well demonstrated in practical fuel cells.Physicochemical characterization analyses further reveal the major origins of the greatly enhanced ORR electrocata lytic performance:the Pt-Co-Mn alloy-induced geometric and ligand effects as well as the extremely high L1_(2) atomic-ordering degree.This work not only successfully develops a highly active and stable ordered ternary intermetallic ORR electrocatalyst,but also elucidates the corresponding"structure-function"relationship,which can be further applied in designing other intermetallic(electro)catalysts.
基金Basic and Applied Basic Research Foundation of Guangdong Province,Grant/Award Numbers:2021A1515110245,2022A1515140108,2023B1515040013National Youth Top-notch Talent Support Program,Grant/Award Number:x2qsA4210090+5 种基金Guangzhou Key Research and Development Program,Grant/Award Number:SL2022B03J01256Guangdong Provincial Key Laboratory of Distributed Energy Systems,Grant/Award Number:2020B1212060075Engineering Research Center of None-food Biomass Efficient Pyrolysis and Utilization Technology of Guangdong Higher Education Institutes,Grant/Award Number:2016GCZX009State Key Laboratory of Pulp and Paper Engineering,Grant/Award Numbers:202215,2022PY02Key projects of social science and technology development in Dongguan,Grant/Award Number:20231800936352National Natural Science Foundation of China,Grant/Award Numbers:21736003,21905044,31971614,32071714。
文摘Metal-organic frameworks recently have been burgeoning and used as precursors to obtain various metal-nitrogen-carbon catalysts for oxygen reduction reaction(ORR).Although rarely studied,Mn-N-C is a promising catalyst for ORR due to its weak Fenton reaction activity and strong graphitization catalysis.Here,we developed a facile strategy for anchoring the atomically dispersed nitrogen-coordinated single Mn sites on carbon nanosheets(MnNCS)from an Mn-hexamine coordination framework.The atomically dispersed Mn-N_(4) sites were dispersed on ultrathin carbon nanosheets with a hierarchically porous structure.The optimized MnNCS displayed an excellent ORR performance in half-cells(0.89 V vs.reversible hydrogen electrode(RHE)in base and 0.76 V vs.RHE in acid in half-wave potential)and Zn-air batteries(233 mW cm^(−2)in peak power density),along with significantly enhanced stability.Density functional theory calculations further corroborated that the Mn-N_(4)-C(12)site has favorable adsorption of*OH as the rate-determining step.These findings demonstrate that the metal-hexamine coordination framework can be used as a model system for the rational design of highly active atomic metal catalysts for energy applications.
基金We gratefully acknowledge the support of this research by the Key Program of the National Natural Science Foundation of China (No. 21031001), the National Natural Science Foundation of China (Nos. 21371053, 21571054, and 21401048), Program for Innovative Research Team in University (No. IRT-1237), Special Research Fund for the Doctoral Program of Higher Education of China (No. 20112301110002), the Natural Science Foundation of Heilongjiang Province (No. QC2014C007), China Postdoctoral Science Foundation funded project (No. 2015T80374), and Excellent Youth Foundation of Heilongjiang University.
文摘The application of direct methanol fuel cells (DMFC) is hampered by high cost, low activity, and poor CO tolerance by the Pt catalyst. Herein, we designed a fancy 3D hybrid by anchoring tungsten nitride (WN) nanoparticles (NPs), of about 3 nm in size, into a 3D carbon nanotube-reduced graphene oxide framework (CNT-rGO) using an assembly route. After depositing Pt, the contacted and strongly coupled Pt-WN NPs were formed, resulting in electron transfer from Pt to WN. The 3D Pt-WN/CNT-rGO hybrid can be used as a bifunctional electrocatalyst for both methanol oxidation reaction (MOR) and oxygen reduction reaction (ORR). In MOR, the catalysts showed excellent CO tolerance and a high mass activity of 702.4 mA.mgpt-1, 2.44 and 3.81 times higher than those of Pt/CNT-rGO and Pt/C(JM) catalysts, respectively. The catalyst also exhibited a more positive onset potential (1.03 V), higher mass activity (151.3 mA.mgpt-1), and better cyclic stability and tolerance in MOR than ORR. The catalyst mainly exhibited a 4e-transfer mechanism with a low peroxide yield. The high activity was closely related to hybrid structure. That is, the 3D framework provided a favorable path for mass-transfer, the CNT-rGO support was favorable for charge transfer, and strongly coupled Pt-WN can enhance the catalytic activity and CO-tolerance of Pt. Pt-WN/CNT-rGO represents a new 3D catalytic platform that is promising as an electrocatalyst for DMFC because it can catalyze both ORR and MOR in an acidic medium with good stability and highly efficient Pt utilization.
文摘The development of cost-effective oxygen reduction reaction (ORR) catalysts with a high methanol tolerance and enhanced durability is highly desirable for direct methanol fuel cells. This work focuses on the conversion of PtNi nanoparticles from a disordered solid solution to an ordered intermetallic compound. Here the effect of this conversion on ORR activity, durability, and methanol tolerance are characterized. X-ray diffraction and transmission electron microscopy results confirm the formation of ordered PtNi intermetallic nanoparticles with high dispersion and a mean particle size of about 7.6 nm. The PtNi intermetallic nanoparticles exhibited enhanced mass and specific activities toward the methanol-tolerant ORR in pure and methanol-containing electrolytes. The specific activity of the ORR at 0.85 V on the PtNi intermetallic nanoparticles is almost 6 times greater than on commercial Pt/C and 3 times greater than on disordered PtNi alloy. Durability tests indicated a minimal loss of ORR activity for PtNi intermetallic nanoparticles after 5,000 potential cycles, whereas the ORR activity decreased by 28% for disordered PtNi alloy. The enhanced methanoltolerant ORR activity and durability may be attributed to the structural and compositional stabilities of the ordered PtNi intermetallic nanoparticles compared relative to the stabilities of the disordered PtNi alloy, strongly suggesting that the PtNi intermetallic nanoparticles may serve as highly active and durable methanol-tolerant ORR electrocatalysts for practical applications.
基金supported by the Natural Scientific Foundation of China (21825501)National Key Research and Development Program (2016YFA0202500 and 2016YFA0200102)+1 种基金Australian Research Council (DP160103107, FT170100224)Tsinghua University Initiative Scientific Research Program。
文摘The demand for efficient and environmentally-benign electrocatalysts that help availably harness the renewable energy resources is growing rapidly. In recent years, increasing insights into the design of water electrolysers, fuel cells, and metal–air batteries emerge in response to the need for developing sustainable energy carriers, in which the oxygen evolution reaction and the oxygen reduction reaction play key roles. However, both reactions suffer from sluggish kinetics that restricts the reactivity. Therefore, it is vital to probe into the structure of the catalysts to exploit high-performance bifunctional oxygen electrocatalysts. Spinel-type catalysts are a class of materials with advantages of versatility, low toxicity, low expense, high abundance, flexible ion arrangement, and multivalence structure. In this review, we afford a basic overview of spinel-type materials and then introduce the relevant theoretical principles for electrocatalytic activity, following that we shed light on the structure–property relationship strategies for spinel-type catalysts including electronic structure, microstructure, phase and composition regulation,and coupling with electrically conductive supports. We elaborate the relationship between structure and property, in order to provide some insights into the design of spinel-type bifunctional oxygen electrocatalysts.
文摘Pt based materials are the most efficient electrocatalysts for the oxygen reduction reaction(ORR)and methanol oxidation reaction(MOR)in fuel cells.Maximizing the utilization of Pt based materials by modulating their morphologies to expose more active sites is a fundamental objective for the practical application of fuel cells.Herein,we report a new class of hierarchically skeletal Pt-Ni nanocrystals(HSNs)with a multi-layered structure,prepared by an inorganic acid-induced solvothermal method.The addition of H_(2)SO_(4)to the synthetic protocol provides a critical trigger for the successful growth of Pt-Ni nanocrystals with the desired structure.The Pt-Ni HSNs synthesized by this method exhibit enhanced mass activity of 1.25 A mgpt−1 at 0.9 V(versus the reversible hydrogen electrode)towards ORR in 0.1-M HClO_(4),which is superior to that of Pt-Ni multi-branched nanocrystals obtained by the same method in the absence of inorganic acid;it is additionally 8.9-fold higher than that of the commercial Pt/C catalyst.Meanwhile,it displays enhanced stability,with only 21.6%mass activity loss after 10,000 cycles(0.6–1.0 V)for ORR.Furthermore,the Pt-Ni HSNs show enhanced activity and anti-toxic ability in CO for MOR.The superb activity of the Pt-Ni HSNs for ORR and MOR is fully attributed to an extensively exposed electrochemical surface area and high intrinsic activity,induced by strain effects,provided by the unique hierarchically skeletal alloy structure.The novel open and hierarchical structure of Pt-Ni alloy provides a promising approach for significant improvements of the activity of Pt based alloy electrocatalysts.
基金The authors acknowledge financial support from the National Basic Research Program of China (Nos.2013CB932601 and 2014CB239303) and the National Natural Science Foundation of China (No. 21133001).
文摘The development of highly efficient and earth-abundant oxygen evolution/ reduction reaction (OER/ORR) catalysts is essential for rechargeable metal-air batteries. Herein, cobalt-based hydroxide nanoparticles @ N-doping carbonic framework (CoOHCat@NCF) core-shell structures have been designed as highly stable and efficient OER/ORR bifunctional catalysts. The obtained composite shows enhanced catalytic activities and excellent stability in alkaline media. In the OER, a high turnover frequency (2.03 s^-1 at an overpotential of 0.36 V), low overpotential at high current density (100 mA.cm-2 requiring an overpotential of 0.38 V), and excellent stability (100 mA·cm^-2 for one week with no activity loss) have been achieved. Furthermore, although cobalt species-based catalysts are known as good ORR catalysts, their hybridization with NCF obtained from metal organic frameworks successfully enhanced their ORR activities. The efficient activity of CoOHCat@NCF as a bifunctional oxygen electrocatalyst can be ascribed to the core-shell structures stabilizing the active catalytic sites and the porous shell structure favoring electrocatalysis-related mass transport.
基金financial supports by the Young Scientists Fund of the National Natural Science Foundation of China (11604249)the Fok Ying-Tong Education Foundation for Young Teachers in the Higher Education Institutions of China (161008)+3 种基金the Foundation of the State Key Laboratory of Optical Fiber and Cable Manufacture Technology (SKLD1602)the State Key Laboratory of Refractors and Metallurgy (G201605), the Fundamental Research Funds for the Central Universities (2019-III-034)the Research Board of the State Key Laboratory of Silicate Materials for Architecturesfinancial supports and grants from Xiamen University Malaysia,the Xiamen University Malaysia Research Fund (XMUMRF/2019-C3/ IENG/0013)
文摘The development of highly active and low-cost catalysts for electrochemical reactions is one of the most attractive topics in the renewable energy technology.Herein,the site-specific nitrogen doping of graphdiyne(GDY)including grap-N,sp-N(Ⅰ)and sp-N(Ⅱ)GDY is systematically investigated as metal-free oxygen reduction electrocatalysts via density functional theory(DFT).Our results indicate that the doped nitrogen atom can significantly improve the oxygen(O2)adsorption activity of GDY through activating its neighboring carbon atoms.The free-energy landscape is employed to describe the electrochemical oxygen reduction reaction(ORR)in both O2 dissociation and association mechanisms.It is revealed that the association mechanism can provide higher ORR onset potential than dissociation mechanism on most of the substrates.Especially,sp-N(Ⅱ)GDY exhibits the highest ORR electrocatalytic activity through increasing the theoretical onset potential to 0.76 V.This work provides an atomic-level insight for the electrochemical ORR mechanism on metal-free N-doped GDY.
基金National Natural Science Foundation of China (Nos. 22078242 and U20A20153)Applied Basic Research Program of Yunnan Province (Nos. 202101BE070001-032 and 202101BH070002)。
文摘Fe-N-C catalysts are widely considered as promising non-precious-metal candidates for electrocatalytic oxygen reduction reaction(ORR),Yet despite their high catalytic activity through rational modulation,challenges remain in their low site density and unsatisfactory mass transfer structure.Herein,we present a structural engineering approach employing a soft-template coating strategy to fabricate a hollow and hierarchically porous N-doped carbon framework anchored with atomically dispersed Fe sites(FeNCh) as an efficient ORR catalyst.The combination of hierarchical porosity and high exterior surface area is proven crucial for exposing more active sites,which gives rise to a remarkable ORR performance with a half-wave potential of 0.902 V in 0.1 m KOH and 0.814 V in 0.1 m HClO_(4),significantly outperforming its counterpart with solid structure and dominance of micropores(FeNC-s).The mass transfer property is revealed by in-situ electrochemical impedance spectroscopy(EIS) measurement.The distribution of relaxation time(DRT) analysis is further introduced to deconvolve the kinetic and mass transport processes,which demonstrates an alleviated mass transport resistance for FeNC-h,validating the effectiveness of structural engineering.This work not only provides an effective structural engineering approach but also contributes to the comprehensive mass transfer evaluation on advanced electrocatalyst for energy conversion applications.