期刊文献+
共找到745篇文章
< 1 2 38 >
每页显示 20 50 100
Nitrogen-doped ordered mesoporous carbon:Effect of carbon precursor on oxygen reduction reactions 被引量:5
1
作者 Xiao-hua Li Kai Wan +3 位作者 Quan-bing Liu Jin-hua Piao Yu-ying Zheng Zhen-xing Liang 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2016年第9期1562-1568,共7页
Aniline,pyrrole and phenanthroline,which have different nitrogen compositions,are used as carbon precursors to synthesize nitrogen-doped ordered mesoporous carbons(NOMCs) by the nanocasting method.The effect of the ... Aniline,pyrrole and phenanthroline,which have different nitrogen compositions,are used as carbon precursors to synthesize nitrogen-doped ordered mesoporous carbons(NOMCs) by the nanocasting method.The effect of the precursor on the resultant NOMC is extensively investigated by nitrogen adsorption-desorption measurements,scanning electron microscopy,X-ray photoelectron spectroscopy(XPS),cyclic voltammetry and rotating ring-disk electrode measurements.Salient findings are as follows.First,the precursor has a significant influence on the specific surface area and textural properties.The NOMC materials derived from pyrrole(C-PY-900:765 m^2/) and phenanthroline(C-Phen-900:746 m^2/) exhibit higher specific surface areas than the aniline analog(C-PA-900:569 m^2/).Second,the XPS results indicate that the total nitrogen content(ca.3.1–3.3 at%) is similar for the three carbon sources,except for a slight difference in the nitrogen configuration.Furthermore,the content of the nitrogen-activated carbon atoms is found to closely depend on the precursor,which is the highest for the phenanthroline-derived carbon.Third,the electrochemical results reveal that the electrocatalytic activity follows in the order C-PA-900 C-PY-900 C-Phen-900,confirming that the nitrogen-activated carbon atoms are the active sites for the oxygen reduction reaction(ORR).In summary,the precursor has considerable influence on the composition and textural properties of the NOMC materials,of which the ORR electrocatalytic activity can be enhanced through optimization of the NOMCs. 展开更多
关键词 ELECTROCATALYSIS Fuel cell Nitrogen-doped ordered mesoporous carbon oxygen reduction reaction PRECURSOR
下载PDF
A Review of In‑Situ Techniques for Probing Active Sites and Mechanisms of Electrocatalytic Oxygen Reduction Reactions 被引量:4
2
作者 Jinyu Zhao Jie Lian +2 位作者 Zhenxin Zhao Xiaomin Wang Jiujun Zhang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第2期61-113,共53页
Electrocatalytic oxygen reduction reaction(ORR)is one of the most important reactions in electrochemical energy technologies such as fuel cells and metal–O2/air batteries,etc.However,the essential catalysts to overco... Electrocatalytic oxygen reduction reaction(ORR)is one of the most important reactions in electrochemical energy technologies such as fuel cells and metal–O2/air batteries,etc.However,the essential catalysts to overcome its slow reaction kinetic always undergo a complex dynamic evolution in the actual catalytic process,and the concomitant intermediates and catalytic products also occur continuous conversion and reconstruction.This makes them difficult to be accurately captured,making the identification of ORR active sites and the elucidation of ORR mechanisms difficult.Thus,it is necessary to use extensive in-situ characterization techniques to proceed the real-time monitoring of the catalyst structure and the evolution state of intermediates and products during ORR.This work reviews the major advances in the use of various in-situ techniques to characterize the catalytic processes of various catalysts.Specifically,the catalyst structure evolutions revealed directly by in-situ techniques are systematically summarized,such as phase,valence,electronic transfer,coordination,and spin states varies.In-situ revelation of intermediate adsorption/desorption behavior,and the real-time monitoring of the product nucleation,growth,and reconstruction evolution are equally emphasized in the discussion.Other interference factors,as well as in-situ signal assignment with the aid of theoretical calculations,are also covered.Finally,some major challenges and prospects of in-situ techniques for future catalysts research in the ORR process are proposed. 展开更多
关键词 oxygen reduction reaction CATALYSTS In-situ techniques Active sites MECHANISMS
下载PDF
Co NP/NC hollow nanoparticles derived from yolk-shell structured ZIFs@polydopamine as bifunctional electrocatalysts for water oxidation and oxygen reduction reactions 被引量:1
3
作者 Jiao Zhao Feng Rong +3 位作者 Yi Yao Wenjun Fan Mingrun Li Qihua Yang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2018年第4期1261-1267,共7页
The pyrolysis under inert atmosphere has been widely used for the synthesis of metal containing heteroatoms doped carbon materials, versatile catalysts for various reactions. However, it is difficult to prevent metal ... The pyrolysis under inert atmosphere has been widely used for the synthesis of metal containing heteroatoms doped carbon materials, versatile catalysts for various reactions. However, it is difficult to prevent metal nanoparticles aggregation during pyrolysis process. Herein, we reported the efficient synthesis of nitrogen doped carbon hollow nanospheres with cobalt nanoparticles (Co NP, ca. 10nm in size) distributed uniformly in the shell via pyrolysis of yolk-shell structured Zn-Co-ZIFs@polydopamine (PDA). PDA acted as both protection layer and carbon source, which successfully prevented the aggregation of cobalt nanoparticles during high-temperature pyrolysis process. The Co NP and N containing carbon (Co NP/NC) hollow nanospheres were active for both oxygen evolution reaction (OER) and oxygen reduction reaction (ORR), affording overpotential of 430 mV at 10 mA/cm2 for OER in 1 M KOH and comparable half-wave potential to that of Pt/C (0.80V vs RHE) for ORR in 0.1 M KOH. The superior performance of carbon hollow nanospheres for both OER and ORR was mainly attributed to its small metal nanoparticles, N-doping and hollow nanostructure. The protection and confinement effect that originated from PDA coating strategy could be extended to the synthesis of other hollow structured carbon materials, especially the ones with small metal nanoparticles. 展开更多
关键词 Zeolitic imidazolate frameworks(ZIFs) Polydopamine(PDA) Carbon hollow nanoparticles oxygen evolution reaction(OER) oxygen reduction reaction(ORR)
下载PDF
Meta-analysis of commercial Pt/C measurements for oxygen reduction reactions via data mining
4
作者 Mingbo Ruan Jing Liu +1 位作者 Ping Song Weilin Xu 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 2022年第1期116-121,共6页
The rotating disk electrode technique is commonly used for screening and characterizing the performance of electrocatalysts for the oxygen reduction reaction(ORR).However,a reliable performance comparison of different... The rotating disk electrode technique is commonly used for screening and characterizing the performance of electrocatalysts for the oxygen reduction reaction(ORR).However,a reliable performance comparison of different electrocatalysts from different labs remains a challenge because of the inconsistency in the measurement of commercial Pt/C.Commercial Pt/C has been adopted extensively as a reference for evaluating the ORR performance of a new electrocatalyst.However,the reported ORR performances of commercial Pt/C from different labs could be significantly different because of multiple factors.Herein,we conducted a meta‐analysis of the ORR performance of commercial Pt/C via data mining of the literature.This revealed the optimal testing conditions for the most repeatable ORR performance,with commercial Pt/C in both acid and alkaline electrolytes;the optimal Pt loading was 20μg/cm^(2) on a 4 mm glassy carbon working electrode.The value of 0.84±0.03 V was suggested as the“Golden reference”of the commercial Pt/C(with Pt 20 wt%)ORR half‐wave potential for the performance evaluation of other ORR catalysts in both acid and alkaline electrolytes.The conclusion obtained through the meta‐analysis was confirmed by experiments.This study provides general guidance for a reliable measurement of the ORR performance of commercial Pt/C as a reference. 展开更多
关键词 oxygen reduction reaction Commercial Pt/C Deep-analysis Verification experiment
下载PDF
A carbon material doped with both porous FeO_(x) and N as an efficient catalyst for oxygen reduction reactions
5
作者 GAO Jian WANG Xin-yao +4 位作者 MENG Ling-xin YIN Zhen MA Na TAN Xiao-yao ZHANG Peng 《新型炭材料(中英文)》 SCIE EI CAS 2024年第6期1202-1212,共11页
To replace precious metal oxygen reduction reaction(ORR)electrocatalysts,many transition metals and N-doped car-bon composites have been proposed in the last decade resulting in their rapid development as promising no... To replace precious metal oxygen reduction reaction(ORR)electrocatalysts,many transition metals and N-doped car-bon composites have been proposed in the last decade resulting in their rapid development as promising non-precious metal catalysts.We used Ketjenblack carbon as the precursor and mixed it with a polymeric ionic liquid(PIL)of[Hvim]NO_(3) and Fe(NO_(3))_(3),which was thermally calcined at 900℃ to produce a porous FeO_(x),N co-doped carbon material denoted FeO_(x)-N/C.Because the PIL of[Hvim]NO_(3) strongly combines with and disperses Fe^(3+)ions,and NO_(3)−is thermally pyrolyzed to form the porous structure,the FeO_(x)-N/C catalyst has a high electrocatalytic activity for the ORR in both 0.1 mol L^(−1) KOH and 0.5 mol L^(−1) H_(2)SO_(4) electrolytes.It was used as the catalyst to assemble a zinc-air battery,which had a peak power density of 185 mW·cm^(−2).Its superior electrocatalytic activity,wide pH range,and easy preparation make FeO_(x)-N/C a promising electrocatalyst for fuel cells and metal-air batteries. 展开更多
关键词 oxygen reduction reaction Ionic liquid Porous carbon Electrocatalysis FeOx N co-doping
下载PDF
Coordination environments build up and tune a superior synergistic “genome” toward novel trifunctional (TM-N_(x)O_(4−x))@g- C_(16)N_(3)-H_(3): High-throughput inspection of ultra-high activity for water splitting and oxygen reduction reactions 被引量:1
6
作者 Chunyao Fang Xian Wang +4 位作者 Qiang Zhang Xihang Zhang Chenglong Shi Jingcheng Xu Mengyu Yang 《Nano Research》 SCIE EI CSCD 2024年第4期2337-2351,共15页
Emerging as a prominent area of focus in energy conversion and storage technologies,the development of highly active metal-based single-atom catalysts(SACs)holds great significance in searching alternatives to replace ... Emerging as a prominent area of focus in energy conversion and storage technologies,the development of highly active metal-based single-atom catalysts(SACs)holds great significance in searching alternatives to replace precious metals toward the efficient,stable,and low-cost hydrogen evolution reaction(HER),as well as the oxygen evolution reaction(OER)and the oxygen reduction reaction(ORR).Combining the tremendous tunability of ligand and coordination environment with rich metal-based electrocatalysts can create breakthrough opportunities for achieving both high stability and activity.Herein,we propose a novel and stable holey graphene-like carbon nitride monolayer g-C_(16)N5(N_(4)@g-C_(16)N_(3))stoichiometries interestingly behaving as a natural substrate for constructing SACs((TM-N_(4))@g-C_(16)N_(3)),whose evenly distributed holes map rich and uniform nitrogen coordination positions with electron-rich lone pairs for anchoring transition metal(TM)atoms.Then,we employed density functional theory(DFT)calculations to systematically investigate the electrocatalytic activity of(TM-N_(4))@g-C_(16)N_(3) toward HER/OER/ORR,meanwhile considering the synergistic modulation of H-loading and O-coordination((TM-N_(x)O_(4-x))@g-C_(16)N_(3)^(-)H_(3),x=0–4).Together a“four-step procedure”screening mechanism with the first-principles high-throughput calculations,we find that(Rh-N_(4))and(Ir-N_(2)O_(2)-II)distributed on g-C_(16)N_(3)^(-)H_(3) can modulate the adsorption strength of the adsorbates,thus achieving the best HER/OER/ORR performance among 216 candidates,and the lowest overpotential of 0.098/0.3/0.46 V and 0.06/0.48/0.45 V,respectively.Additionally,the d-band center,crystal orbital Hamilton population(COHP),and molecular orbitals are used to reveal the OER/ORR activity source.Particularly,the Rh/Ir-d orbital is dramatically hybridized with the O-p orbital of the oxygenated adsorbates,so that the lone-electrons incipiently locate at the antibonding orbital pair up and populate the downward bonding orbital,allowing oxygenated intermediates to be adsorbed onto(TM-N_(x)O_(4-x))@g-C_(16)N_(3)^(-)H_(3) appropriately. 展开更多
关键词 single atom catalysts loading and coordination hydrogen evolution reaction oxygen evolution reaction oxygen reduction reaction
原文传递
Synthesis techniques, mechanism, and prospects of high-loading single-atom catalysts for oxygen reduction reactions
7
作者 Mingyuan Pang Min Yang +9 位作者 Haohao Zhang Yuqing Shen Zhen Kong Jiajia Ye Chaoyue Shan Ying Wang Juan An Wensi Li Xing Gao Jibin Song 《Nano Research》 SCIE EI CSCD 2024年第11期9371-9396,共26页
The importance of the oxygen reduction reaction (ORR) in fuel cells and zinc-air batteries is self-evident, and effective catalysts could significantly improve the catalytic efficiency of ORR. Single-atom catalysts ar... The importance of the oxygen reduction reaction (ORR) in fuel cells and zinc-air batteries is self-evident, and effective catalysts could significantly improve the catalytic efficiency of ORR. Single-atom catalysts are gaining increasing interest due to their high atom efficiency and effective catalytic performance compared to other catalyst types. While the optimal loading of catalytic sites in single-atom catalysts significantly influences their catalytic efficiency. However, creating stable single-atom catalysts with high-loading remains a difficult task. Therefore, we showcase and describe the latest developments in techniques for producing single-atom catalysts with high-loadings. In addition, the performance of noble metal, non-precious metal, and diatomic catalysts in ORR processes is summarized. What’s more, the key difficulties and opportunities in the sector are demonstrated by examining the synthesis techniques and evaluating the performance and structure. This review will help researchers to advance the research process of high-loading single-atom catalysts and accelerate their practical application in the field of ORR research. 展开更多
关键词 oxygen reduction reaction high-loading single-atom catalysts
原文传递
Periodic Defect Boundary-Mediated Activity of Electrocatalytic Oxygen Reduction Reactions of Fe-N-C Catalysts
8
作者 Ziwei Wang Huiting Niu +3 位作者 Tiantian Wu Shujiang Ding Bao Yu Xia Yaqiong Su 《Renewables》 2024年第3期213-221,共9页
The introduction of defects can adjust the activity of graphene-based single-atom catalysts for oxygen reduction reactions(ORR).Herein,we for the first time investigate the ORR catalytic activity of FeN_(4)sites embed... The introduction of defects can adjust the activity of graphene-based single-atom catalysts for oxygen reduction reactions(ORR).Herein,we for the first time investigate the ORR catalytic activity of FeN_(4)sites embedded on graphene with four types of line-defective boundary via density functional theory calculations.Our results show that periodic line defects consisting of pentagon-pentagon-octagon(C_(585))or quad-octagon chains(C_(484))can significantly enhance ORR activity,owing to the optimized electronic structures of FeN_(4)sites.The spin magnetic moment and the valence state of the Fe atom are both well correlated with the ORR overpotential.Experimental investigations further corroborate that FeN_(4)with a high degree of defects exhibits better ORR activity and stability compared to FeN_(4)sites of pristine graphene and commercial Pt/C.This work unravels the influence of the periodic defect boundary on the ORR performance of Fe-N-C catalysts and paves the way towards the rational design of highly effective single-atom electrocatalysts. 展开更多
关键词 density functional theory Fe-N-C catalysts oxygen reduction reaction periodic defect electrocatalyst
原文传递
Co_3O_4 supported on N,P-doped carbon as a bifunctional electrocatalyst for oxygen reduction and evolution reactions 被引量:6
9
作者 黄颖彬 张敏 +2 位作者 柳鹏 程发良 王立世 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2016年第8期1249-1256,共8页
Noble metals, such as platinum, ruthenium and iridium‐group metals, are often used as oxygen reduction or evolution reaction (ORR/OER) electrocatalysts. To reduce the cost and provide an application of bifunctional... Noble metals, such as platinum, ruthenium and iridium‐group metals, are often used as oxygen reduction or evolution reaction (ORR/OER) electrocatalysts. To reduce the cost and provide an application of bifunctional catalysis, in this work, cobalt oxide supported on nitrogen and phospho‐rus co‐doped carbon (Co3O4/NPC) was fabricated and examined as a bifunctional electrocatalyst for OER and ORR. To prepare Co3O4/NPC, NPC was pyrolyzed from melamine and phytic acid support‐ed on carbon, followed by the solvothermal synthesis of Co3O4 on NPC. Linear sweep voltammetry was used to evaluate the activity for OER and ORR. For OER, Co3O4/NPC showed an onset potential of 0.54 V (versus the saturated calomel electrode) and a current density of 21.95 mA/cm2 at 0.80 V, which was better than both Co3O4/C and NPC. The high activity of Co3O4/NPC was attributed to a synergistic effect of the N, P co‐dopants and Co3O4. For ORR, Co3O4/NPC exhibited an activity close to commercial Pt/C in terms of the diffusion limited current density (–4.49 vs–4.76 mA/cm2 at–0.80 V), and Co3O4 played the key role for the catalysis. Chronoamperometry (current versus time) was used to evaluate the stability, which showed that Co3O4/NPC maintained 46%current after the chronoamperometry test for OER and 95% current for ORR. Overall, Co3O4/NPC exhibited high activity and improved stability for both OER and ORR. 展开更多
关键词 Cathode catalyst oxygen reduction reaction oxygen evolution reaction Doped carbon COBALT
下载PDF
Strong synergy between physical and chemical properties:Insight into optimization of atomically dispersed oxygen reduction catalysts 被引量:5
10
作者 Yifan Zhang Linsheng Liu +4 位作者 Yuxuan Li Xueqin Mu Shichun Mu Suli Liu Zhihui Dai 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第4期36-49,共14页
Atomically dispersed catalysts exhibit significant influence on facilitating the sluggish oxygen reduction reaction(ORR)kinetics with high atom economy,owing to remarkable attributes including nearly 100%atomic utiliz... Atomically dispersed catalysts exhibit significant influence on facilitating the sluggish oxygen reduction reaction(ORR)kinetics with high atom economy,owing to remarkable attributes including nearly 100%atomic utilization and exceptional catalytic functionality.Furthermore,accurately controlling atomic physical properties including spin,charge,orbital,and lattice degrees of atomically dispersed catalysts can realize the optimized chemical properties including maximum atom utilization efficiency,homogenous active centers,and satisfactory catalytic performance,but remains elusive.Here,through physical and chemical insight,we review and systematically summarize the strategies to optimize atomically dispersed ORR catalysts including adjusting the atomic coordination environment,adjacent electronic orbital and site density,and the choice of dual-atom sites.Then the emphasis is on the fundamental understanding of the correlation between the physical property and the catalytic behavior for atomically dispersed catalysts.Finally,an overview of the existing challenges and prospects to illustrate the current obstacles and potential opportunities for the advancement of atomically dispersed catalysts in the realm of electrocatalytic reactions is offered. 展开更多
关键词 Atomically dispersed catalysts Coordination environment Electronic orbitals Inter-site distance effect oxygen reduction reaction
下载PDF
Boric Acid-Assisted Pyrolysis for High-Loading Single-Atom Catalysts to Boost Oxygen Reduction Reaction in Zn-Air Batteries 被引量:2
11
作者 Chenxi Xu Jiexing Wu +12 位作者 Liang Chen Yi Gong Boyang Mao Jincan Zhang Jinhai Deng Mingxuan Mao Yan Shi Zhaohui Hou Mengxue Cao Huanxin Li Haihui Zhou Zhongyuan Huang Yafei Kuang 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第2期102-110,共9页
The emerging of single-atom catalysts(SACs)offers a great opportunity for the development of advanced energy storage and conversion devices due to their excellent activity and durability,but the actual mass production... The emerging of single-atom catalysts(SACs)offers a great opportunity for the development of advanced energy storage and conversion devices due to their excellent activity and durability,but the actual mass production of high-loading SACs is still challenging.Herein,a facile and green boron acid(H_(3)BO_(3))-assisted pyrolysis strategy is put forward to synthesize SACs by only using chitosan,cobalt salt and H_(3)BO_(3)as precursor,and the effect of H_(3)BO_(3)is deeply investigated.The results show that molten boron oxide derived from H_(3)BO_(3)as ideal high-temperature carbonization media and blocking media play important role in the synthesis process.As a result,the acquired Co/N/B tri-doped porous carbon framework(Co-N-B-C)not only presents hierarchical porous structure,large specific surface area and abundant carbon edges but also possesses high-loading single Co atom(4.2 wt.%),thus giving rise to outstanding oxygen catalytic performance.When employed as a catalyst for air cathode in Zn-air batteries,the resultant Co-N-B-C catalyst shows remarkable power density and long-term stability.Clearly,our work gains deep insight into the role of H_(3)BO_(3)and provides a new avenue to synthesis of high-performance SACs. 展开更多
关键词 boric acid oxygen reduction reaction single-atom catalysts Zn-air batteries
下载PDF
Ultrafine ordered L1_(2)-Pt-Co-Mn ternary intermetallic nanoparticles as high-performance oxygen-reduction electrocatalysts for practical fuel cells 被引量:1
12
作者 Enping Wang Liuxuan Luo +12 位作者 Yong Feng Aiming Wu Huiyuan Li Xiashuang Luo Yangge Guo Zehao Tan Fengjuan Zhu Xiaohui Yan Qi Kang Zechao Zhuang Daihui Yang Shuiyun Shen Junliang Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第6期157-165,I0005,共10页
The long-range periodically ordered atomic structures in intermetallic nanoparticles(INPs)can significantly enhance both the electrocatalytic activity and electrochemical stability toward the oxygen reduction reaction... The long-range periodically ordered atomic structures in intermetallic nanoparticles(INPs)can significantly enhance both the electrocatalytic activity and electrochemical stability toward the oxygen reduction reaction(ORR)compared to the disordered atomic structures in ordinary solid-solution alloy NPs.Accordingly,through a facile and scalable synthetic method,a series of carbon-supported ultrafine Pt_3Co_(x)Mn_(1-x)ternary INPs are prepared in this work,which possess the"skin-like"ultrathin Pt shells,the ordered L1_(2) atomic structure,and the high-even dispersion on supports(L1_(2)-Pt_3Co_(x)Mn_(1-x)/~SPt INPs/C).Electrochemical results present that the composition-optimized L1_(2)-Pt_3Co_(0.7)Mn_(0.3)/~SPt INPs/C exhibits the highest electrocata lytic activity among the series,which are also much better than those of the pristine ultrafine Pt/C.Besides,it also has a greatly enhanced electrochemical stability.In addition,the effects of annealing temperature and time are further investigated.More importantly,such superior ORR electrocatalytic performance of L1_(2)-Pt_3Co_(0.7)Mn_(0.3)/~SPt INPs/C are also well demonstrated in practical fuel cells.Physicochemical characterization analyses further reveal the major origins of the greatly enhanced ORR electrocata lytic performance:the Pt-Co-Mn alloy-induced geometric and ligand effects as well as the extremely high L1_(2) atomic-ordering degree.This work not only successfully develops a highly active and stable ordered ternary intermetallic ORR electrocatalyst,but also elucidates the corresponding"structure-function"relationship,which can be further applied in designing other intermetallic(electro)catalysts. 展开更多
关键词 Platinum Cobalt Manganese oxygen reduction reaction Ordered intermetallic L1_(2)atomic structure Proton-exchange membrane fuel cell
下载PDF
Atomically dispersed Mn-N_(x) catalysts derived from Mn-hexamine coordination frameworks for oxygen reduction reaction 被引量:1
13
作者 Guoyu Zhong Liuyong Zou +10 位作者 Xiao Chi Zhen Meng Zehong Chen Tingzhen Li Yongfa Huang Xiaobo Fu Wenbo Liao Shaona Zheng Yongjun Xu Feng Peng Xinwen Peng 《Carbon Energy》 SCIE EI CAS CSCD 2024年第5期114-126,共13页
Metal-organic frameworks recently have been burgeoning and used as precursors to obtain various metal-nitrogen-carbon catalysts for oxygen reduction reaction(ORR).Although rarely studied,Mn-N-C is a promising catalyst... Metal-organic frameworks recently have been burgeoning and used as precursors to obtain various metal-nitrogen-carbon catalysts for oxygen reduction reaction(ORR).Although rarely studied,Mn-N-C is a promising catalyst for ORR due to its weak Fenton reaction activity and strong graphitization catalysis.Here,we developed a facile strategy for anchoring the atomically dispersed nitrogen-coordinated single Mn sites on carbon nanosheets(MnNCS)from an Mn-hexamine coordination framework.The atomically dispersed Mn-N_(4) sites were dispersed on ultrathin carbon nanosheets with a hierarchically porous structure.The optimized MnNCS displayed an excellent ORR performance in half-cells(0.89 V vs.reversible hydrogen electrode(RHE)in base and 0.76 V vs.RHE in acid in half-wave potential)and Zn-air batteries(233 mW cm^(−2)in peak power density),along with significantly enhanced stability.Density functional theory calculations further corroborated that the Mn-N_(4)-C(12)site has favorable adsorption of*OH as the rate-determining step.These findings demonstrate that the metal-hexamine coordination framework can be used as a model system for the rational design of highly active atomic metal catalysts for energy applications. 展开更多
关键词 carbon nanosheets ELECTROCATALYST metal-organic frameworks Mn-N_(4) oxygen reduction reaction Zn-air batteries
下载PDF
Small-sized tungsten nitride anchoring into a 3D CNT- rGO framework as a superior bifunctional catalyst for the methanol oxidation and oxygen reduction reactions 被引量:10
14
作者 Haijing Yan Meichen Meng +4 位作者 Lei Wang Aiping Wu Chungui Tian Lu Zhao Honggang Fu 《Nano Research》 SCIE EI CAS CSCD 2016年第2期329-343,共15页
The application of direct methanol fuel cells (DMFC) is hampered by high cost, low activity, and poor CO tolerance by the Pt catalyst. Herein, we designed a fancy 3D hybrid by anchoring tungsten nitride (WN) nanop... The application of direct methanol fuel cells (DMFC) is hampered by high cost, low activity, and poor CO tolerance by the Pt catalyst. Herein, we designed a fancy 3D hybrid by anchoring tungsten nitride (WN) nanoparticles (NPs), of about 3 nm in size, into a 3D carbon nanotube-reduced graphene oxide framework (CNT-rGO) using an assembly route. After depositing Pt, the contacted and strongly coupled Pt-WN NPs were formed, resulting in electron transfer from Pt to WN. The 3D Pt-WN/CNT-rGO hybrid can be used as a bifunctional electrocatalyst for both methanol oxidation reaction (MOR) and oxygen reduction reaction (ORR). In MOR, the catalysts showed excellent CO tolerance and a high mass activity of 702.4 mA.mgpt-1, 2.44 and 3.81 times higher than those of Pt/CNT-rGO and Pt/C(JM) catalysts, respectively. The catalyst also exhibited a more positive onset potential (1.03 V), higher mass activity (151.3 mA.mgpt-1), and better cyclic stability and tolerance in MOR than ORR. The catalyst mainly exhibited a 4e-transfer mechanism with a low peroxide yield. The high activity was closely related to hybrid structure. That is, the 3D framework provided a favorable path for mass-transfer, the CNT-rGO support was favorable for charge transfer, and strongly coupled Pt-WN can enhance the catalytic activity and CO-tolerance of Pt. Pt-WN/CNT-rGO represents a new 3D catalytic platform that is promising as an electrocatalyst for DMFC because it can catalyze both ORR and MOR in an acidic medium with good stability and highly efficient Pt utilization. 展开更多
关键词 small-sized tungste nnitride 3D CNT-rGO bifunctional catalyst methanol oxidation reaction oxygen reduction reaction
原文传递
Conversion of PtNi alloy from disordered to ordered for enhanced activity and durability in methanol-tolerant oxygen reduction reactions 被引量:8
15
作者 Liangliang Zou Jing Fan +4 位作者 Yi Zhou Congmin Wang Jun Li Zhiqing Zou Hui Yang 《Nano Research》 SCIE EI CAS CSCD 2015年第8期2777-2788,共12页
The development of cost-effective oxygen reduction reaction (ORR) catalysts with a high methanol tolerance and enhanced durability is highly desirable for direct methanol fuel cells. This work focuses on the convers... The development of cost-effective oxygen reduction reaction (ORR) catalysts with a high methanol tolerance and enhanced durability is highly desirable for direct methanol fuel cells. This work focuses on the conversion of PtNi nanoparticles from a disordered solid solution to an ordered intermetallic compound. Here the effect of this conversion on ORR activity, durability, and methanol tolerance are characterized. X-ray diffraction and transmission electron microscopy results confirm the formation of ordered PtNi intermetallic nanoparticles with high dispersion and a mean particle size of about 7.6 nm. The PtNi intermetallic nanoparticles exhibited enhanced mass and specific activities toward the methanol-tolerant ORR in pure and methanol-containing electrolytes. The specific activity of the ORR at 0.85 V on the PtNi intermetallic nanoparticles is almost 6 times greater than on commercial Pt/C and 3 times greater than on disordered PtNi alloy. Durability tests indicated a minimal loss of ORR activity for PtNi intermetallic nanoparticles after 5,000 potential cycles, whereas the ORR activity decreased by 28% for disordered PtNi alloy. The enhanced methanoltolerant ORR activity and durability may be attributed to the structural and compositional stabilities of the ordered PtNi intermetallic nanoparticles compared relative to the stabilities of the disordered PtNi alloy, strongly suggesting that the PtNi intermetallic nanoparticles may serve as highly active and durable methanol-tolerant ORR electrocatalysts for practical applications. 展开更多
关键词 platinum and nickel intermetallic nanoparticle oxygen reduction reaction methanol tolerance ELECTROCATALYST DURABILITY
原文传递
Recent advances in spinel-type electrocatalysts for bifunctional oxygen reduction and oxygen evolution reactions 被引量:8
16
作者 Xiao-Meng Liu Xiaoyang Cui +7 位作者 Kamran Dastafkan Hao-Fan Wang Cheng Tang Chuan Zhao Aibing Chen Chuanxin He Minghan Han Qiang Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第2期290-302,I0010,共14页
The demand for efficient and environmentally-benign electrocatalysts that help availably harness the renewable energy resources is growing rapidly. In recent years, increasing insights into the design of water electro... The demand for efficient and environmentally-benign electrocatalysts that help availably harness the renewable energy resources is growing rapidly. In recent years, increasing insights into the design of water electrolysers, fuel cells, and metal–air batteries emerge in response to the need for developing sustainable energy carriers, in which the oxygen evolution reaction and the oxygen reduction reaction play key roles. However, both reactions suffer from sluggish kinetics that restricts the reactivity. Therefore, it is vital to probe into the structure of the catalysts to exploit high-performance bifunctional oxygen electrocatalysts. Spinel-type catalysts are a class of materials with advantages of versatility, low toxicity, low expense, high abundance, flexible ion arrangement, and multivalence structure. In this review, we afford a basic overview of spinel-type materials and then introduce the relevant theoretical principles for electrocatalytic activity, following that we shed light on the structure–property relationship strategies for spinel-type catalysts including electronic structure, microstructure, phase and composition regulation,and coupling with electrically conductive supports. We elaborate the relationship between structure and property, in order to provide some insights into the design of spinel-type bifunctional oxygen electrocatalysts. 展开更多
关键词 Spinel electrocatalyst Bifunctional energy electrocatalysis oxygen evolution reaction oxygen reduction reaction Structure–property relationship
下载PDF
Hierarchically skeletal multi-layered Pt-Ni nanocrystals for highly efficient oxygen reduction and methanol oxidation reactions 被引量:6
17
作者 Shibo Li Zhi Qun Tian +5 位作者 Yang Liu Zheng Jang Syed Waqar Hasan Xingfa Chen Panagiotis Tsiakaras Pei Kang Shen 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 2021年第4期648-657,共10页
Pt based materials are the most efficient electrocatalysts for the oxygen reduction reaction(ORR)and methanol oxidation reaction(MOR)in fuel cells.Maximizing the utilization of Pt based materials by modulating their m... Pt based materials are the most efficient electrocatalysts for the oxygen reduction reaction(ORR)and methanol oxidation reaction(MOR)in fuel cells.Maximizing the utilization of Pt based materials by modulating their morphologies to expose more active sites is a fundamental objective for the practical application of fuel cells.Herein,we report a new class of hierarchically skeletal Pt-Ni nanocrystals(HSNs)with a multi-layered structure,prepared by an inorganic acid-induced solvothermal method.The addition of H_(2)SO_(4)to the synthetic protocol provides a critical trigger for the successful growth of Pt-Ni nanocrystals with the desired structure.The Pt-Ni HSNs synthesized by this method exhibit enhanced mass activity of 1.25 A mgpt−1 at 0.9 V(versus the reversible hydrogen electrode)towards ORR in 0.1-M HClO_(4),which is superior to that of Pt-Ni multi-branched nanocrystals obtained by the same method in the absence of inorganic acid;it is additionally 8.9-fold higher than that of the commercial Pt/C catalyst.Meanwhile,it displays enhanced stability,with only 21.6%mass activity loss after 10,000 cycles(0.6–1.0 V)for ORR.Furthermore,the Pt-Ni HSNs show enhanced activity and anti-toxic ability in CO for MOR.The superb activity of the Pt-Ni HSNs for ORR and MOR is fully attributed to an extensively exposed electrochemical surface area and high intrinsic activity,induced by strain effects,provided by the unique hierarchically skeletal alloy structure.The novel open and hierarchical structure of Pt-Ni alloy provides a promising approach for significant improvements of the activity of Pt based alloy electrocatalysts. 展开更多
关键词 Hierarchically skeletal Pt-Ni NANOCRYSTALS SELF-ASSEMBLY Solvent thermal method oxygen reduction reaction Methanol oxidation reaction Fuel cells ACTIVITY
下载PDF
Cobalt-based hydroxide nanoparticles @ N-doping carbonic frameworks core-shell structures as highly efficient bifunctional electrocatalysts for oxygen evolution and oxygen reduction reactions 被引量:6
18
作者 Shiqiang Feng Cheng Liu +2 位作者 Zhigang Chai Qi Li Dongsheng Xu 《Nano Research》 SCIE EI CAS CSCD 2018年第3期1482-1489,共8页
The development of highly efficient and earth-abundant oxygen evolution/ reduction reaction (OER/ORR) catalysts is essential for rechargeable metal-air batteries. Herein, cobalt-based hydroxide nanoparticles @ N-dop... The development of highly efficient and earth-abundant oxygen evolution/ reduction reaction (OER/ORR) catalysts is essential for rechargeable metal-air batteries. Herein, cobalt-based hydroxide nanoparticles @ N-doping carbonic framework (CoOHCat@NCF) core-shell structures have been designed as highly stable and efficient OER/ORR bifunctional catalysts. The obtained composite shows enhanced catalytic activities and excellent stability in alkaline media. In the OER, a high turnover frequency (2.03 s^-1 at an overpotential of 0.36 V), low overpotential at high current density (100 mA.cm-2 requiring an overpotential of 0.38 V), and excellent stability (100 mA·cm^-2 for one week with no activity loss) have been achieved. Furthermore, although cobalt species-based catalysts are known as good ORR catalysts, their hybridization with NCF obtained from metal organic frameworks successfully enhanced their ORR activities. The efficient activity of CoOHCat@NCF as a bifunctional oxygen electrocatalyst can be ascribed to the core-shell structures stabilizing the active catalytic sites and the porous shell structure favoring electrocatalysis-related mass transport. 展开更多
关键词 core-shell structure cobalt-based hydroxidenanoparticles @ N-dopingcarbonic framework(CoOHCat@NCF) bifunctional electrocatalyst oxygen evolution reaction oxygen reduction reaction
原文传递
Probing the active sites of site-specific nitrogen doping in metal-free graphdiyne for electrochemical oxygen reduction reactions 被引量:7
19
作者 Xingzhu Chen Wee-Jun Ong +2 位作者 Zhouzhou Kong Xiujian Zhao Neng Li 《Science Bulletin》 SCIE EI CSCD 2020年第1期45-54,M0004,共11页
The development of highly active and low-cost catalysts for electrochemical reactions is one of the most attractive topics in the renewable energy technology.Herein,the site-specific nitrogen doping of graphdiyne(GDY)... The development of highly active and low-cost catalysts for electrochemical reactions is one of the most attractive topics in the renewable energy technology.Herein,the site-specific nitrogen doping of graphdiyne(GDY)including grap-N,sp-N(Ⅰ)and sp-N(Ⅱ)GDY is systematically investigated as metal-free oxygen reduction electrocatalysts via density functional theory(DFT).Our results indicate that the doped nitrogen atom can significantly improve the oxygen(O2)adsorption activity of GDY through activating its neighboring carbon atoms.The free-energy landscape is employed to describe the electrochemical oxygen reduction reaction(ORR)in both O2 dissociation and association mechanisms.It is revealed that the association mechanism can provide higher ORR onset potential than dissociation mechanism on most of the substrates.Especially,sp-N(Ⅱ)GDY exhibits the highest ORR electrocatalytic activity through increasing the theoretical onset potential to 0.76 V.This work provides an atomic-level insight for the electrochemical ORR mechanism on metal-free N-doped GDY. 展开更多
关键词 Graphdiyne(GDY) Site-specific nitrogen doping Metal-free catalysts oxygen reduction reaction(ORR)
原文传递
Structural engineering of Fe single-atom oxygen reduction catalyst with high site density and improved mass transfer
20
作者 Jiawen Wu Yuanzhi Zhu +3 位作者 An Cai Xiaobin Fan Wenchao Peng Yang Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第11期634-644,共11页
Fe-N-C catalysts are widely considered as promising non-precious-metal candidates for electrocatalytic oxygen reduction reaction(ORR),Yet despite their high catalytic activity through rational modulation,challenges re... Fe-N-C catalysts are widely considered as promising non-precious-metal candidates for electrocatalytic oxygen reduction reaction(ORR),Yet despite their high catalytic activity through rational modulation,challenges remain in their low site density and unsatisfactory mass transfer structure.Herein,we present a structural engineering approach employing a soft-template coating strategy to fabricate a hollow and hierarchically porous N-doped carbon framework anchored with atomically dispersed Fe sites(FeNCh) as an efficient ORR catalyst.The combination of hierarchical porosity and high exterior surface area is proven crucial for exposing more active sites,which gives rise to a remarkable ORR performance with a half-wave potential of 0.902 V in 0.1 m KOH and 0.814 V in 0.1 m HClO_(4),significantly outperforming its counterpart with solid structure and dominance of micropores(FeNC-s).The mass transfer property is revealed by in-situ electrochemical impedance spectroscopy(EIS) measurement.The distribution of relaxation time(DRT) analysis is further introduced to deconvolve the kinetic and mass transport processes,which demonstrates an alleviated mass transport resistance for FeNC-h,validating the effectiveness of structural engineering.This work not only provides an effective structural engineering approach but also contributes to the comprehensive mass transfer evaluation on advanced electrocatalyst for energy conversion applications. 展开更多
关键词 Single-atom catalysts oxygen reduction reaction Structural engineering Active site density Mass transfer Zinc-air batteries
下载PDF
上一页 1 2 38 下一页 到第
使用帮助 返回顶部