The oxygen fluxe across the sediment-water interface(SWI)in coastal region is a key measure to fully understand the regulation of biogeochemical cycles in an aquatic environment.However,studies on fluxes of dissolved ...The oxygen fluxe across the sediment-water interface(SWI)in coastal region is a key measure to fully understand the regulation of biogeochemical cycles in an aquatic environment.However,studies on fluxes of dissolved oxygen in gravel beach are limited,because of the difficulty in sample collection and instrumentations deployment.In this study,benthic oxygen fluxes across rocky substratum in an intertidal zone of Huiquan Bay was estimated by using noninvasive eddy correlation techniques.A total of 10 burst measurements were analyzed.The oxygen flux fluctuated from-5.7888±2.6 to+49.3344±2.6 mmol O2 m-2/d were observed.The cospectra analysis showed that the oxygen flux at the frequency band between 0.093 and 0.279 Hz(at a period from 3.58 to 10.75 s)contributed 50.19%to the total spectrum on average.The results showed that the major contribution band moved to the high frequency region gradually and reached a steady state with increasing tidal flood.It is demonstrated that wave movement and wave breaking interaction resulted in the change of oxygen flux between gravel beach and shallow waters at the start and the end of a rising tide period,respectively.The eddy correlation techniques offer an efficient means for flux measurement over a gravel or mixed sand and gravel beaches.展开更多
The seawater box model for the South China Sea (SCS) was used to calculate the fluxes of dissolved oxygen in Box I, Box Ⅱand Box Ⅲ for establishing the box model of dissolved oxygen (DO)in the SCS.The total input fl...The seawater box model for the South China Sea (SCS) was used to calculate the fluxes of dissolved oxygen in Box I, Box Ⅱand Box Ⅲ for establishing the box model of dissolved oxygen (DO)in the SCS.The total input flux of oxygen to the SCS was calculated to be 280.4×104 mol/s, of which 49.2% was transported into the sea by outer oceans, 30.3% came from organisms photosynthesis, 3% from rainfall, 0.4% from rirers, and 17.0% from the atmosphere.展开更多
One unresolved challenge in the egg industry is how to efficiently and non-invasively detect unfertilized eggs prior to incubation.This detection ability would not only significantly improve hatching rates and reduce ...One unresolved challenge in the egg industry is how to efficiently and non-invasively detect unfertilized eggs prior to incubation.This detection ability would not only significantly improve hatching rates and reduce costs but also conserve incubator space and prevent poor-quality embryos from contributing to the spread of infections.This study demonstrates a procedure for distinguishing between fertilized and unfertilized eggs prior to incubation by studying the respiratory differences between fertilized and unfertilized eggs using the Non-invasive Micro-test Technique(NMT).A customized micro-testing examination platform,NMT Egg Testing System(NMT-ETS)was constructed for the real-time monitoring of the intensity and rate of oxygen exchange between the egg and its external environment.The results from this study revealed that at room temperature,there is a significant difference in gas exchange rates between fertilized and unfertilized eggs.The results indicate that the oxygen flux of fertilized eggs exceed 20 pmol/(cm^(2)·s),whereas unfertilized eggs show a much lower oxygen flux.Based on the results,the NMT method can be used to effectively distinguish between fertilized and unfertilized chicken eggs.展开更多
Since the mud snail Bullacta exarata was introduced for economic aquaculture in the Huanghe River(Yellow River) Delta in 2001, its quick population growth and expanded distribution make it a key-species in the interti...Since the mud snail Bullacta exarata was introduced for economic aquaculture in the Huanghe River(Yellow River) Delta in 2001, its quick population growth and expanded distribution make it a key-species in the intertidal zone of this area. This significantly contributed to the economic income of the local people, but its potential ecological impact on the benthic ecosystem remains unknown. A mesocosm study was conducted to test whether its bioturbation activities affect the microphytobenthos(MPBs;i.e., sedimentary microbes and unicellular algae)productivity and the nutrient exchange between the sediment-water interface. Our results show that the mud snail significantly impacted the dissolved oxygen(DO) flux across the sediment-water interface on the condition of normal sediment and light treatment, and significantly increased the ammonium efflux during recovery period in the defaunated sediment and dark treatment. The presence of micro-and meiofauna significantly increased the NH4-N flux in dark treatment. Whereas, in light treatment, these small animals had less effects on the DO and NH4-N flux between sediment-water interface. Our results provide better insight into the effect of the mud snail B.exarata on the ecosystem functioning via benthic fluxes.展开更多
The dephosphorization experiments of low phosphorus containing steel by CaO-based and BaO-based fluxes were carried out. The effects of the oxygen potential in molten steel and the BaO content in the slag on dephospho...The dephosphorization experiments of low phosphorus containing steel by CaO-based and BaO-based fluxes were carried out. The effects of the oxygen potential in molten steel and the BaO content in the slag on dephosphorization and rephosphorization of molten steel were analyzed. The results showed that the dephosphorization ratio of more than 50% and the ultra-low phosphorus content of less than 0.005% in steel were obtained by the three kinds of dephosphorization fluxes as the oxygen potential of molten steel higher than 400×10^-6. Rephosphorization of molten steel was serious as the oxygen content of molten steel lower than 10×10^-6. BaO-based fluxes can improve the dephosphorization effect and reduce the phosphorus pick-up effectively under the condition of weak deoxidization of molten steel (the oxygen potential is about 100×10^-6), but can not prevent rephosphorization under the condition of deep deoxidization of molten steel (the oxygen potential less than 10×10^-6).展开更多
The effect of Fe203 and Liz CO3 additives in flux core on the weld metal oxygen content and weld penetration in self-shielded flux cored arc welding were studied schematically. The result shows that the oxygen content...The effect of Fe203 and Liz CO3 additives in flux core on the weld metal oxygen content and weld penetration in self-shielded flux cored arc welding were studied schematically. The result shows that the oxygen content in the weld metal and weld penetration both increased with the Fe203 addition increased in the range of 5 wt. % to 20 wt. %. The oxygen content in the weld metal was increased with the Li2CO3 addition increased in the range of 1 wt. % to 8 wt. %. However, the weld penetration decreased when Li2CO3 addition exceeding 4 wt. %. High-speed photographic images show that when Fe2O3 addition influx core exceeding 15 wt. %, droplet became excessively large, so that spatters were frequently generated in large numbers. In this study, Fe203 and Li2 CO3 in the amount of 11 wt. % and 4 wt. %, respectively, jointly added in the flux core can achieve a deeper weld penetration with sound usability characteristics.展开更多
Bi26MO10O69 nanopowder was prepared by hydrothermal method and used as a surface modification material for oxygen separation membrane to enhance oxygen permeability. Thermal decomposition behavior and phase variation ...Bi26MO10O69 nanopowder was prepared by hydrothermal method and used as a surface modification material for oxygen separation membrane to enhance oxygen permeability. Thermal decomposition behavior and phase variation of the precursor were investigated by thermal analyzer (TG-DSC) and high-temperature X-ray diffraction (HT-XRD). Bi26MO10O69 porous layer was coated on the air side of BaCo0.7Fe0.2Nb0.1O3-δ (BCFN) oxygen permeable membrane by dipping method. In the partial oxidation experiment of coke oven gas (COG), the Bi26Mo10O69-coated BCFN membrane exhibits higher oxygen permeability and CH4 conversion than the uncoated BCFN membrane. When the thickness of BCFN membrane was 1 mm and the COG and air fluxes were 120 and 100 mL/min, the oxygen permeation flux reached 16.48 mL/(min.cm^2) at 875℃, which was 16.96% higher than the uncoated BCFN membrane. Therefore, Bi26MoloO69 porous layer on the air side will be promising modification coating on the oxygen permeability of BCFN membrane.展开更多
The climatologies of dissolved oxygen concentration in the ocean simulated by nine Earth system models(ESMs) from the historical emission driven experiment of CMIP5(Phase 5 of the Climate Model Intercomparison Project...The climatologies of dissolved oxygen concentration in the ocean simulated by nine Earth system models(ESMs) from the historical emission driven experiment of CMIP5(Phase 5 of the Climate Model Intercomparison Project) are quantitatively evaluated by comparing the simulated oxygen to the WOA09 observation based on common statistical metrics. At the sea surface, distribution of dissolved oxygen is well simulated by all nine ESMs due to well-simulated sea surface temperature(SST), with both globally-averaged error and root mean square error(RMSE) close to zero, and both correlation coefficients and normalized standard deviation close to 1. However, the model performance differs from each other at the intermediate depth and deep ocean where important water masses exist. At the depth of 500 to 1 000 m where the oxygen minimum zones(OMZs) exist, all ESMs show a maximum of globally-averaged error and RMSE, and a minimum of the spatial correlation coefficient. In the ocean interior, the reason for model biases is complicated, and both the meridional overturning circulation(MOC) and the particulate organic carbon flux contribute to the biases of dissolved oxygen distribution. Analysis results show the physical bias contributes more. Simulation bias of important water masses such as North Atlantic Deep Water(NADW), Antarctic Bottom Water(AABW) and North Pacific Intermediate Water(NPIW) indicated by distributions of MOCs greatly affects the distributions of oxygen in north Atlantic, Southern Ocean and north Pacific, respectively.Although the model simulations of oxygen differ greatly from each other in the ocean interior, the multi-model mean shows a better agreement with the observation.展开更多
基金Funding for this work was supported by the National Natural Science Foundation of China (Nos. 41276089, 41176078)the National High-technology research and development Program of China (‘863’Program) (Nos. 2012AA09A20103, 2009AA09Z201)
文摘The oxygen fluxe across the sediment-water interface(SWI)in coastal region is a key measure to fully understand the regulation of biogeochemical cycles in an aquatic environment.However,studies on fluxes of dissolved oxygen in gravel beach are limited,because of the difficulty in sample collection and instrumentations deployment.In this study,benthic oxygen fluxes across rocky substratum in an intertidal zone of Huiquan Bay was estimated by using noninvasive eddy correlation techniques.A total of 10 burst measurements were analyzed.The oxygen flux fluctuated from-5.7888±2.6 to+49.3344±2.6 mmol O2 m-2/d were observed.The cospectra analysis showed that the oxygen flux at the frequency band between 0.093 and 0.279 Hz(at a period from 3.58 to 10.75 s)contributed 50.19%to the total spectrum on average.The results showed that the major contribution band moved to the high frequency region gradually and reached a steady state with increasing tidal flood.It is demonstrated that wave movement and wave breaking interaction resulted in the change of oxygen flux between gravel beach and shallow waters at the start and the end of a rising tide period,respectively.The eddy correlation techniques offer an efficient means for flux measurement over a gravel or mixed sand and gravel beaches.
文摘The seawater box model for the South China Sea (SCS) was used to calculate the fluxes of dissolved oxygen in Box I, Box Ⅱand Box Ⅲ for establishing the box model of dissolved oxygen (DO)in the SCS.The total input flux of oxygen to the SCS was calculated to be 280.4×104 mol/s, of which 49.2% was transported into the sea by outer oceans, 30.3% came from organisms photosynthesis, 3% from rainfall, 0.4% from rirers, and 17.0% from the atmosphere.
基金supported by National Natural Science Foundation of China(31371771)Special Fund for Agroscientific Research in the Public Interest(201303084)National Science and Technology Support Programme(2015BAD19B05).
文摘One unresolved challenge in the egg industry is how to efficiently and non-invasively detect unfertilized eggs prior to incubation.This detection ability would not only significantly improve hatching rates and reduce costs but also conserve incubator space and prevent poor-quality embryos from contributing to the spread of infections.This study demonstrates a procedure for distinguishing between fertilized and unfertilized eggs prior to incubation by studying the respiratory differences between fertilized and unfertilized eggs using the Non-invasive Micro-test Technique(NMT).A customized micro-testing examination platform,NMT Egg Testing System(NMT-ETS)was constructed for the real-time monitoring of the intensity and rate of oxygen exchange between the egg and its external environment.The results from this study revealed that at room temperature,there is a significant difference in gas exchange rates between fertilized and unfertilized eggs.The results indicate that the oxygen flux of fertilized eggs exceed 20 pmol/(cm^(2)·s),whereas unfertilized eggs show a much lower oxygen flux.Based on the results,the NMT method can be used to effectively distinguish between fertilized and unfertilized chicken eggs.
基金The Strategic Priority Research Program of the Chinese Academy of Sciences under contract Nos XDA23050304 and XDA23050202the Key Research Project of Frontier Science of Chinese Academy of Sciences under contract No.QYZDB-SSWDQC041+3 种基金the Program of Ministry of Science and Technology of the People’s Republic of China under contract No.2015FY210300the National Natural Science Foundation of China under contract No.41061130543the Netherlands Organization for Scientific Research under contract No.843.10.003 as part of the NSFC-NOW “Water ways,Harbours,Estuaries and Coastal Engineering” schemethe self-deployment project of Yantai Institute of Coastal Zone Research,Chinese Academy of Sciences under contract No.YIC755021012
文摘Since the mud snail Bullacta exarata was introduced for economic aquaculture in the Huanghe River(Yellow River) Delta in 2001, its quick population growth and expanded distribution make it a key-species in the intertidal zone of this area. This significantly contributed to the economic income of the local people, but its potential ecological impact on the benthic ecosystem remains unknown. A mesocosm study was conducted to test whether its bioturbation activities affect the microphytobenthos(MPBs;i.e., sedimentary microbes and unicellular algae)productivity and the nutrient exchange between the sediment-water interface. Our results show that the mud snail significantly impacted the dissolved oxygen(DO) flux across the sediment-water interface on the condition of normal sediment and light treatment, and significantly increased the ammonium efflux during recovery period in the defaunated sediment and dark treatment. The presence of micro-and meiofauna significantly increased the NH4-N flux in dark treatment. Whereas, in light treatment, these small animals had less effects on the DO and NH4-N flux between sediment-water interface. Our results provide better insight into the effect of the mud snail B.exarata on the ecosystem functioning via benthic fluxes.
文摘The dephosphorization experiments of low phosphorus containing steel by CaO-based and BaO-based fluxes were carried out. The effects of the oxygen potential in molten steel and the BaO content in the slag on dephosphorization and rephosphorization of molten steel were analyzed. The results showed that the dephosphorization ratio of more than 50% and the ultra-low phosphorus content of less than 0.005% in steel were obtained by the three kinds of dephosphorization fluxes as the oxygen potential of molten steel higher than 400×10^-6. Rephosphorization of molten steel was serious as the oxygen content of molten steel lower than 10×10^-6. BaO-based fluxes can improve the dephosphorization effect and reduce the phosphorus pick-up effectively under the condition of weak deoxidization of molten steel (the oxygen potential is about 100×10^-6), but can not prevent rephosphorization under the condition of deep deoxidization of molten steel (the oxygen potential less than 10×10^-6).
文摘The effect of Fe203 and Liz CO3 additives in flux core on the weld metal oxygen content and weld penetration in self-shielded flux cored arc welding were studied schematically. The result shows that the oxygen content in the weld metal and weld penetration both increased with the Fe203 addition increased in the range of 5 wt. % to 20 wt. %. The oxygen content in the weld metal was increased with the Li2CO3 addition increased in the range of 1 wt. % to 8 wt. %. However, the weld penetration decreased when Li2CO3 addition exceeding 4 wt. %. High-speed photographic images show that when Fe2O3 addition influx core exceeding 15 wt. %, droplet became excessively large, so that spatters were frequently generated in large numbers. In this study, Fe203 and Li2 CO3 in the amount of 11 wt. % and 4 wt. %, respectively, jointly added in the flux core can achieve a deeper weld penetration with sound usability characteristics.
基金Projects(51272154,51472156)supported by the National Natural Science Foundation of ChinaProjects(sdcx2012033,sdcx2012062)supported by the Innovation Fund of Shanghai University,China+1 种基金Project(14ZR1416400)supported by Special Research Foundation for Training and Selecting Outstanding Young Teachers of Universities in Shanghai,Chinasupported by Shanghai Science and Technology Committee,China
文摘Bi26MO10O69 nanopowder was prepared by hydrothermal method and used as a surface modification material for oxygen separation membrane to enhance oxygen permeability. Thermal decomposition behavior and phase variation of the precursor were investigated by thermal analyzer (TG-DSC) and high-temperature X-ray diffraction (HT-XRD). Bi26MO10O69 porous layer was coated on the air side of BaCo0.7Fe0.2Nb0.1O3-δ (BCFN) oxygen permeable membrane by dipping method. In the partial oxidation experiment of coke oven gas (COG), the Bi26Mo10O69-coated BCFN membrane exhibits higher oxygen permeability and CH4 conversion than the uncoated BCFN membrane. When the thickness of BCFN membrane was 1 mm and the COG and air fluxes were 120 and 100 mL/min, the oxygen permeation flux reached 16.48 mL/(min.cm^2) at 875℃, which was 16.96% higher than the uncoated BCFN membrane. Therefore, Bi26MoloO69 porous layer on the air side will be promising modification coating on the oxygen permeability of BCFN membrane.
基金The National Natural Science Foundation of China under contract No.41306029the Basic Scientific Fund for National Public Research Institutes of China under contract Nos 2013T01 and 2014G25
文摘The climatologies of dissolved oxygen concentration in the ocean simulated by nine Earth system models(ESMs) from the historical emission driven experiment of CMIP5(Phase 5 of the Climate Model Intercomparison Project) are quantitatively evaluated by comparing the simulated oxygen to the WOA09 observation based on common statistical metrics. At the sea surface, distribution of dissolved oxygen is well simulated by all nine ESMs due to well-simulated sea surface temperature(SST), with both globally-averaged error and root mean square error(RMSE) close to zero, and both correlation coefficients and normalized standard deviation close to 1. However, the model performance differs from each other at the intermediate depth and deep ocean where important water masses exist. At the depth of 500 to 1 000 m where the oxygen minimum zones(OMZs) exist, all ESMs show a maximum of globally-averaged error and RMSE, and a minimum of the spatial correlation coefficient. In the ocean interior, the reason for model biases is complicated, and both the meridional overturning circulation(MOC) and the particulate organic carbon flux contribute to the biases of dissolved oxygen distribution. Analysis results show the physical bias contributes more. Simulation bias of important water masses such as North Atlantic Deep Water(NADW), Antarctic Bottom Water(AABW) and North Pacific Intermediate Water(NPIW) indicated by distributions of MOCs greatly affects the distributions of oxygen in north Atlantic, Southern Ocean and north Pacific, respectively.Although the model simulations of oxygen differ greatly from each other in the ocean interior, the multi-model mean shows a better agreement with the observation.