The adsorption of aqueous cadmium ions(Cd(Ⅱ)) have been investigated for modified activated carbon(AC-T)with oxygen-containing functional groups.The oxygen-containing groups of AC-T play an important role in Cd(Ⅱ) i...The adsorption of aqueous cadmium ions(Cd(Ⅱ)) have been investigated for modified activated carbon(AC-T)with oxygen-containing functional groups.The oxygen-containing groups of AC-T play an important role in Cd(Ⅱ) ion adsorption onto AC-T.The modified activated carbon is characterized by scanning electron microscopy,Fourier transform infrared spectroscopy(FT-IR) and X-ray photoelectron spectroscopy(XPS).The results of batch experiments indicate that the maximal adsorption could be achieved over the broad pH range of 4.5 to 6.5.Adsorption isotherms and kinetic study suggest that the sorption of Cd(Ⅱ) onto AC-T produces monolayer coverage and that adsorption is controlled by chemical adsorption.And the adsorbent has a good reusability.According to the FT-IR and XPS analyses,electrostatic attraction and cation exchange between Cd(Ⅱ) and oxygen-containing functional groups on AC-T are dominant mechanisms for Cd(Ⅱ) adsorption.展开更多
Oxygen-containing functional groups were found to e ectively boost the K^(+)storage performance of carbonaceous materials,however,the mechanism behind the performance enhancement remains unclear.Herein,we report highe...Oxygen-containing functional groups were found to e ectively boost the K^(+)storage performance of carbonaceous materials,however,the mechanism behind the performance enhancement remains unclear.Herein,we report higher rate capability and better long-term cycle performance employing oxygen-doped graphite oxide(GO)as the anode material for potassium ion batteries(PIBs),compared to the raw graphite.The in situ Raman spectroscopy elucidates the adsorption-intercalation hybrid K^(+)storage mechanism,assigning the capacity enhancement to be mainly correlated with reversible K^(+)adsorption/desorption at the newly introduced oxygen sites.It is unraveled that the C=O and COOH rather than C-O-C and OH groups contribute to the capacity enhancement.Based on in situ Fourier transform infrared(FT-IR)spectra and in situ electrochemical impedance spectroscopy(EIS),it is found that the oxygen-containing functional groups regulate the components of solid electrolyte interphase(SEI),leading to the formation of highly conductive,intact and robust SEI.Through the systematic investigations,we hereby uncover the K^(+)storage mechanism of GO-based PIB,and establish a clear relationship between the types/contents of oxygen functional groups and the regulated composition of SEI.展开更多
In this study,impurity-free porous graphene(PG) with intrinsic pore structure was synthesized through a facile acid-alkali etching-assisted sonication approach.The pore structure appears on the surface of graphene she...In this study,impurity-free porous graphene(PG) with intrinsic pore structure was synthesized through a facile acid-alkali etching-assisted sonication approach.The pore structure appears on the surface of graphene sheets due to intrinsic defects of graphene.The PG possessed an extremely high specific surface area of 2184 m^2/g,the size of^5 μm and layer numbers of 3-8.Additionally,PG contained micropores and mesopores simultaneously,with an average pore diameter of approximately 3 nm.The effects of acid,alkali,and ultrasound treatment on PG preparation were elucidated by transmission electron microscopy and fourier transform infrared spectroscopy.First,in an acidic solution,oxygen-containing functional groups(hydroxyls,carboxyl,and epoxides) were formed due to the hydrolysis of sulfate and continuous transformations of these functional groups on graphene oxide.Second,under the synergistic effects of alkali and ultrasound treatment,PG was obtained due to the loss of carboxyl and epoxide groups.A new route for preparing PG was provided by the proposed method.展开更多
To prepare a highly efficient NiMo/Al_(2)O_(3) hydrodesulfurization catalyst,the combined effects of specific organic functional groups and alumina surface characteristics were investigated.First,the correlation betwe...To prepare a highly efficient NiMo/Al_(2)O_(3) hydrodesulfurization catalyst,the combined effects of specific organic functional groups and alumina surface characteristics were investigated.First,the correlation between the surface characteristics of four different alumina and the existing Mo species states was established.It was found that the Mo equilibrium adsorption capacity can be used as a specific descriptor to quantitatively evaluate the changes in surface characteristics of different alumina.A lower Mo equilibrium adsorption capacity for alumina means weaker metal-support interaction and the loaded Mo species are easier to transform into MoS2.However,the Mo-O-Al bonds still exist at the metal-support interface.The introduction of cationic surfactant hecadecyl trimethyl ammonium bromide(CTAB)can further improve Mo species dispersion through electrostatic attraction with Mo anions and interaction of its alkyl chain with the alumina surface;meanwhile,the introduction of ethylenediamine tetraacetic acid(EDTA)can complex with Ni ions to enhance the Ni-promoting effect on Mo.Therefore,the NiMo catalyst designed using alumina with lower Mo equilibrium adsorption capacity and the simultaneous addition of EDTA and CTAB exhibits the highest hydrodesulfurization activity for 4,6-dimethyl dibenzothiophene because of its proper metal-support interaction and more well-dispersed Ni-Mo-S active phases.展开更多
Global warming has caused an increase in the frequency and duration of droughts worldwide.Droughts could trigger large changes in physico-chemical conditions and phytoplankton community in waterbodies,resulting in a s...Global warming has caused an increase in the frequency and duration of droughts worldwide.Droughts could trigger large changes in physico-chemical conditions and phytoplankton community in waterbodies,resulting in a shift in the phytoplankton community.Spring diatom blooms in reservoirs have been increasingly observed in the past decade in the Taihu Lake basin.The aim of the present study is to elucidate the impacts of droughts on aquatic environment and to determine the driving factors for the succession of the phytoplankton functional groups based on the analysis of data collected during spring from 2009 to 2020 in the Daxi Reservoir.The unimodal relationship between 1-month aggregated precipitation index and phytoplankton species richness indicated the competitive exclusion occurred in extremely drought period.The structural equation modeling indicated that drought-related low water level conditions intensified sediment resuspension,and increased the phosphorus-enriched nonalgal turbidity in the Daxi Reservoir.Concurrently,a steady shift in the Reynolds phytoplankton functional groups from L 0,TD,J,X 2,and A(phytoplankton taxa preferring low turbidity and nutrient conditions)to TB(pennate diatoms being adapt to turbid and nutrient-rich conditions)was observed.The increased TP and non-algal turbidity in addition to the lowered disturbance contribute to the prevalence of Group TB.Considering the difficulties in nutrient control,timely water replenishment is often a feasible method of controlling the dominance of harmful algae for reservoir management.Finally,alternative water sources are in high demand for ensuring ecological safety and water availability when dealing with drought.展开更多
Anthropogenic disturbances are widespread in tropical forests and influence the species composition in the overstory.However,the impacts of historical disturbance on tropical forest overstory recovery are unclear due ...Anthropogenic disturbances are widespread in tropical forests and influence the species composition in the overstory.However,the impacts of historical disturbance on tropical forest overstory recovery are unclear due to a lack of disturbance data,and previous studies have focused on understory species.In this study,the purpose was to deter-mine the influence of historical disturbance on the diver-sity,composition and regeneration of overstory species in present forests.In the 20-ha Xishuangbanna tropical sea-sonal rainforest dynamics plot in southwestern China,the historical disturbance boundaries were delineated based on panchromatic photographs from 1965.Factors that drove species clustering in the overstory layer(DBH≥40 cm)were analyzed and the abundance,richness and composition of these species were compared among different tree groups based on multiple regression tree analysis.The coefficient of variation of the brightness value in historical panchro-matic photographs from 1965 was the primary driver of spe-cies clustering in the overstory layer.The abundance and richness of overstory species throughout the regeneration process were similar,but species composition was always different.Although the proportion of large-seeded and vigorous-sprouting species showed no significant differ-ence between disturbed and undisturbed forests in the tree-let layer(DBH<20 cm),the difference became significant when DBH increased.The findings highlight that historical disturbances have strong legacy effects on functional group composition in the overstory and the recovery of overstory species was multidimensional.Functional group composi-tion can better indicate the dynamics of overstory species replacement during secondary succession.展开更多
[Objective]The aim was to carry out stoichiometry on the early-spring herbs functional group in subtropical artificial wetland.[Method]UV-Vis spectrophotometer was used for the determination of nitrate-nitrogen,ammoni...[Objective]The aim was to carry out stoichiometry on the early-spring herbs functional group in subtropical artificial wetland.[Method]UV-Vis spectrophotometer was used for the determination of nitrate-nitrogen,ammonium nitrogen and phosphorus concentrations.Potassium persulfate absorptiometry was used for the measurement of total N content,while the flame photometer was used to detect the potassium and sodium concentration in plants.All the nutrient determination of plant samples were repeated for four times.[Result]The four nutrient concentrations in almost all samples were in the normal range of natural plant nutrition concentrations;in early-spring herbs functional groups,different species showed diversity on the nutrient concentrations;plant height had no significant effect on the nutrient concentrations in plants;the nutrient concentrations of non-grass group plants were higher than that of grass group plants;the nutrient concentrations of the annual herb were higher than that of perennial herbs.[Conclusion]The study had provided basis for the understanding of the effects of changes in nutritional conditions on species diversity,community structure and succession of the system.展开更多
In this study,precise control over the thickness and termination of Ti3C2TX MXene flakes is achieved to enhance their electrical properties,environmental stability,and gas-sensing performance.Utilizing a hybrid method...In this study,precise control over the thickness and termination of Ti3C2TX MXene flakes is achieved to enhance their electrical properties,environmental stability,and gas-sensing performance.Utilizing a hybrid method involving high-pressure processing,stirring,and immiscible solutions,sub-100 nm MXene flake thickness is achieved within the MXene film on the Si-wafer.Functionalization control is achieved by defunctionalizing MXene at 650℃ under vacuum and H2 gas in a CVD furnace,followed by refunctionalization with iodine and bromine vaporization from a bubbler attached to the CVD.Notably,the introduction of iodine,which has a larger atomic size,lower electronegativity,reduce shielding effect,and lower hydrophilicity(contact angle:99°),profoundly affecting MXene.It improves the surface area(36.2 cm^(2) g^(-1)),oxidation stability in aqueous/ambient environments(21 days/80 days),and film conductivity(749 S m^(-1)).Additionally,it significantly enhances the gas-sensing performance,including the sensitivity(0.1119Ωppm^(-1)),response(0.2% and 23%to 50 ppb and 200 ppm NO_(2)),and response/recovery times(90/100 s).The reduced shielding effect of the–I-terminals and the metallic characteristics of MXene enhance the selectivity of I-MXene toward NO2.This approach paves the way for the development of stable and high-performance gas-sensing two-dimensional materials with promising prospects for future studies.展开更多
The activated carbon with high surface area was prepared by KOH activation.It was further modified by H2SO4 and HNO3 to introduce more surface functional groups.The pore structure of the activated carbons before and a...The activated carbon with high surface area was prepared by KOH activation.It was further modified by H2SO4 and HNO3 to introduce more surface functional groups.The pore structure of the activated carbons before and after modification was analyzed based on the nitrogen adsorption isotherms.The morphology of those activated carbons was characterized using scanning electronic microscopy (SEM).The surface functional groups were determined by Fourier transform infrared spectroscopy (FTIR).The quantity of those groups was measured by the Boehm titration method.Cr(VI) removal by the activated carbons from aqueous solution was investigated at different pH values.The results show that compared with H2SO4,HNO3 destructs the original pore of the activated carbon more seriously and induces more acidic surface functional groups on the activated carbon.The pH value of the solution plays a key role in the Cr(VI) removal.The ability of reducing Cr(VI) to Cr(III) by the activated carbons is relative to the acidic surface functional groups.At higher pH values,the Cr(VI) removal ratio is improved by increasing the acidic surface functional groups of the activated carbons.At lower pH values,however,the acidic surface functional groups almost have no effect on the Cr(VI) removal by the activated carbon from aqueous solution.展开更多
Variations in the fractions of biomass allocated to functional components are widely considered as plant responses to resource availability for grassland plants. Observations indicated shoots isometrically relates to ...Variations in the fractions of biomass allocated to functional components are widely considered as plant responses to resource availability for grassland plants. Observations indicated shoots isometrically relates to roots at the community level but allometrically at the species level in Tibetan alpine grasslands. These differences may result from the specific complementarity of functional groups between functional components, such as leaf, root, stem and reproductive organ. To test the component complementary responses to regional moisture variation, we conducted a multi-site transect survey to measure plant individual size and component biomass fractions of common species belonging to the functional groups: forbs, grasses, legumes and sedges on the Northern Tibetan Plateau in peak growing season in 2010. Along the mean annual precipitation (MAP) gradient, we sampled 7o species, in which 2o are in alpine meadows, 20 in alpine steppes, 15 in alpine desert-steppes and 15 in alpine deserts, respectively. Our results showed that the size of alpine plants is small with individual biomass mostly lower than 1.0 g. Plants keep relative conservative component individual responses moisture functional fractions across alpine grasslands at the level. However, the complementary between functional components to variations specifically differ among groups. These results indicate that functional group diversity may be an effective tool for scaling biomass allocation patterns from individual up to community level. Therefore, it is necessary andvaluable to perform intensive and systematic studies on identification and differentiation the influences of compositional changes in functional groups on ecosystem primary services and processes.展开更多
The adsorption behaviors and dispersing properties of polycarboxylate superplasticizer(PCE) with different functional groups were systematically analyzed to reveal the theory and methods of modifying PCE molecular str...The adsorption behaviors and dispersing properties of polycarboxylate superplasticizer(PCE) with different functional groups were systematically analyzed to reveal the theory and methods of modifying PCE molecular structures and regulating PCE performances. By substituting carboxylic groups with sulfonic groups, ester groups or acylamino groups, respectively, modified PCEs with different functional groups were synthesized. Results show that introducing low amount of ester groups or sulfonic groups into the PCE molecules has no negative effects on the fluidity of cement paste, while introducing acylamino groups into PCE molecules significantly weakens the fluidity of cement paste. At low amount(when the molar ratio of sodium methallyl sulfonate to TPEG is lower than 0.4), the rapid adsorption of sulfonic groups onto the cement particles contributes to the high dispersing performance of the sulfonic group modified PCEs. When the substitution ratio of acrylic acid by sulfonic acid is higher than 0.4, the viscosity and the yield stress of cement paste increases sharply. Redundant sulfonic groups lead to the excessive charge density of the PCE, which contributes to the inhomogeneous adsorption on the cement grains and hence results in the decline of the dispersing performance. Substitution of carboxylic group by acylamino group or ester group slightly changes the viscosity as well as the yield stress of cement paste. Introducing sulfonic group into PCE molecule improves the adsorption behavior of PCEs, while introducing ester group or acylamino group into PCE depresses the adsorption properties.展开更多
The relationship between trace elements in coal and organic functional groups of coal, also some of aromatic structure, was investigated by using curve fitting of infrared spectra. Cluster analysis was also performed ...The relationship between trace elements in coal and organic functional groups of coal, also some of aromatic structure, was investigated by using curve fitting of infrared spectra. Cluster analysis was also performed according to the degree of affinity of organic groups to the trace elements. The results show that there is a possibility that trace elements, especially LREE, were bound to peripheral organic functional groups of middle rank coal macromolecule. The most possible functional group that binds trace element is the hydroxyl, and to the less degree, the asymmetric -CH3 and 〉CH2 stretching, -CH3 stretching, etc. The degree of affinity of trace elements to different functional groups varies. The tendency obeys the natural structural changing law of trace elements-- the periodic law. The deviation of some trace elements from this regular trend is attributed to the deviation of intrinsic "confusion degree" (conventional molar entropy) of the matter system of coal basin, which is affected by the inner and outer factors during the evolution.展开更多
The functional groups on graphene sheets surface affect their dispersion and interfacial adhesion in polymer matrix. We compared the mechanical property of polymethymethacrylate(PMMA) microcellular foams reinforced ...The functional groups on graphene sheets surface affect their dispersion and interfacial adhesion in polymer matrix. We compared the mechanical property of polymethymethacrylate(PMMA) microcellular foams reinforced with graphene oxide(GO) and reduced graphene oxide(RGO) to investigate this influence of functional groups. RGO sheets were fabricated by solvent thermal reduction in DMF medium. UV-Vis, FT-IR and XPS analyses indicate the difference of oxygen-containing groups on GO and RGO sheets surface. The observation of SEM illustrates that the addition of a smaller number of GO or RGO sheets causes a fine cellular structure of PMMA foams with a higher cell density(about 1011 cells/cm3) and smaller cell sizes(about 1-2 μm) owing to their remarkable heterogeneous nucleation effect. Compared to GO reinforced foams, the RGO/PMMA foams own lower cell density and bigger cell size in their microstructure, and their compressive strength is lower even when the reinforcement contents are the same and the foam bulk density is higher. These results indicate that the oxygen-containing groups on GO sheets’ surface are beneficial to adhere CO2 to realize a larger nucleation rate, and their strong interaction with PMMA matrix improves the mechanical property of PMMA foams.展开更多
Generalized functional separation of variables to nonlinear evolution equations is studied in terms of the extended group foliation method, which is based on the Lie point symmetry method. The approach is applied to n...Generalized functional separation of variables to nonlinear evolution equations is studied in terms of the extended group foliation method, which is based on the Lie point symmetry method. The approach is applied to nonlinear wave equations with variable speed and external force. A complete classification for the wave equation which admits functional separable solutions is presented. Some known results can be recovered by this approach.展开更多
We consider the functional separation of variables to the nonlinear diffusion equation with source and convection term: ut = (A(x)D(u)ux)x + B(x)Q(u), Ax ≠ 0. The functional separation of variables to thi...We consider the functional separation of variables to the nonlinear diffusion equation with source and convection term: ut = (A(x)D(u)ux)x + B(x)Q(u), Ax ≠ 0. The functional separation of variables to this equation is studied by using the group foliation method. A classification is carried out for the equations which admit the function separable solutions. As a consequence, some solutions to the resulting equations are obtained.展开更多
A series of new chelating resins with incorporating heterocyclic functional groups: pyridine, thiadizole, benzothizole into macroporous chloromethylated polystyrene were synthesized via hydrophilic spacer arm of poly...A series of new chelating resins with incorporating heterocyclic functional groups: pyridine, thiadizole, benzothizole into macroporous chloromethylated polystyrene were synthesized via hydrophilic spacer arm of polyethylene glycol containing sulfur. These chelating resins were found to show high adsorption capacities for Ag^+, Hg^2+, Au^3+ and Pd^2+, and the presence of spacer arm can enhance adsorption ability due to increase the hydrophilicity of the chelating resins.展开更多
The three-dimensional(3D) visualization of the functional bundles in the peripheral nerve provides direct and detailed intraneural spatial information. It is useful for selecting suitable surgical methods to repair ...The three-dimensional(3D) visualization of the functional bundles in the peripheral nerve provides direct and detailed intraneural spatial information. It is useful for selecting suitable surgical methods to repair nerve defects and in optimizing the construction of tissue-engineered nerve grafts. However, there remain major technical hurdles in obtaining, registering and interpreting 2D images, as well as in establishing 3D models. Moreover, the 3D models are plagued by poor accuracy and lack of detail and cannot completely reflect the stereoscopic microstructure inside the nerve. To explore and help resolve these key technical problems of 3D reconstruction, in the present study, we designed a novel method based on re-imaging techniques and computer image layer processing technology. A 20-cm ulnar nerve segment from the upper arm of a fresh adult cadaver was used for acetylcholinesterase(ACh E) staining. Then, 2D panoramic images were obtained before and after ACh E staining under the stereomicroscope. Using layer processing techniques in Photoshop, a space transformation method was used to fulfill automatic registration. The contours were outlined, and the 3D rendering of functional fascicular groups in the long-segment ulnar nerve was performed with Amira 4.1 software. The re-imaging technique based on layer processing in Photoshop produced an image that was detailed and accurate. The merging of images was accurate, and the whole procedure was simple and fast. The least square support vector machine was accurate, with an error rate of only 8.25%. The 3D reconstruction directly revealed changes in the fusion of different nerve functional fascicular groups. In conclusion. The technique is fast with satisfactory visual reconstruction.展开更多
In order to explore the influence of modification sites of functional groups on landfill gas (CO2/CH4) separation performance of metal-organic frameworks (MOFs), six types of or- ganic linkers and three types of f...In order to explore the influence of modification sites of functional groups on landfill gas (CO2/CH4) separation performance of metal-organic frameworks (MOFs), six types of or- ganic linkers and three types of functional groups (i.e. -F, -NH2, -CH3) were used to construct 36 MOFs of pcu topology based on copper paddlewheel. Grand canonical Monte Carlo sim- ulations were performed in this work to evaluate the separation performance of MOFs at low (vacuum swing adsorption) and high (pressure swing adsorption) pressures, respectively. Simulation results demonstrated that CO2 working capacity of the unfunctionalized MOFs generally exhibits pore-size dependence at 1 bar, which increases with the decrease in pore sizes. It was also found that -NH2 funetionalized MOFs exhibit the highest CO2 uptake due to the enhanced Coulombic interactions between the polar -NH2 groups and the quadrupole moment of CO2 molecules, which is followed by -CH3 and -F functionalized ones. Moreover, positioning the functional groups -NH2 and -CH3 at sites far from the metal node (site b) exhibits more significant enhancement on CO2/CH4 separation performance compared to that adjacent to the metal node (site a).展开更多
Phytoplankton and environment factors were investigated in 2015 and phytoplankton functional groups were used to understand their temporal and spatial distribution and their driving factors in Wanfeng Reservoir. Seven...Phytoplankton and environment factors were investigated in 2015 and phytoplankton functional groups were used to understand their temporal and spatial distribution and their driving factors in Wanfeng Reservoir. Seventeen functional groups(B, D, E, F, G, J, Lo, MP, P, S1, T, W1, W2, X1, X2, Xph, Y) were identified based on 34 species. The dominant groups were: J/B/P/D in dry season, X1/J/Xph/G/T in normal season and J in flood season. Phytoplankton abundance ranged from 5.33×10~4 cells/L to 3.65×10~7 cells/L, with the highest value occurring in flood season and lowest in dry season. The vertical profi le of dominant groups showed little differentiation except for P, which dominated surface layers over 20 m as a result of mixing water masses and higher transparency during dry season. However, the surface waters presented higher values of phytoplankton abundance than other layers, possibly because of greater irradiance. The significant explaining variables and their ability to describe the spatial distribution of the phytoplankton community in RDA diff ered seasonally as follows: dry season, NH4-N, NO_3-N, NO_2-N, TN:TP ratio and transparency(SD); normal season, temperature(WT), water depth, TN, NH4-N and NO_3-N; flood season, WT, water depth, NO_3-N and NO_2-N. Furthermore, nitrogen, water temperature, SD and water depth were significant variables explaining the variance of phytoplankton communities when datasets included all samples. The results indicated that water physical conditions and hydrology were important in phytoplankton community dynamics, and nitrogen was more important than phosphorus in modifying phytoplankton communities. Seasonal differences in the relationship between the environment and phytoplankton community should be considered in water quality management.展开更多
In complex feed structures, there exist main chemical functional groups which are associated with nutrient utilization and availability and functionality. Each functional group has unique molecular structure therefore...In complex feed structures, there exist main chemical functional groups which are associated with nutrient utilization and availability and functionality. Each functional group has unique molecular structure therefore produce unique molecular vibration spectral profile. Feed processing has been used to improve nutrient utilization for many years. However, to date, there was little study on processing-induced changes of feed intrinsic structure and functional groups on a molecular basis within intact tissue. This is because limited research technique is available to study inherent structure on a molecular basis. Recently bioanalytical techniques: such as Synchrotron Infrared Microspectroscopy as well as Diffuse Reflectance Infrared Fourier Transform molecular spectroscopy have been developed. These techniques enable to detect molecular structure change within intact tissues. These techniques can prevent destruction or alteration of the intrinsic protein structures during processing for analysis. However, these techniques have not been used in animal feed and nutrition research. The objective of this review was show that with the advanced technique, sensitivity and responses of functional groups to feed processing on a molecular basis could be detected in my research team. These functional groups are highly associated with nutrient utilization in animals.展开更多
基金Supported by the Fundamental Research Funds for the Central Universities(TD2013-2,2012LYB33)the National Natural Science Foundation of China(51278053,21373032)grant-in-aid from Kochi University of Technology and China Scholarship Council
文摘The adsorption of aqueous cadmium ions(Cd(Ⅱ)) have been investigated for modified activated carbon(AC-T)with oxygen-containing functional groups.The oxygen-containing groups of AC-T play an important role in Cd(Ⅱ) ion adsorption onto AC-T.The modified activated carbon is characterized by scanning electron microscopy,Fourier transform infrared spectroscopy(FT-IR) and X-ray photoelectron spectroscopy(XPS).The results of batch experiments indicate that the maximal adsorption could be achieved over the broad pH range of 4.5 to 6.5.Adsorption isotherms and kinetic study suggest that the sorption of Cd(Ⅱ) onto AC-T produces monolayer coverage and that adsorption is controlled by chemical adsorption.And the adsorbent has a good reusability.According to the FT-IR and XPS analyses,electrostatic attraction and cation exchange between Cd(Ⅱ) and oxygen-containing functional groups on AC-T are dominant mechanisms for Cd(Ⅱ) adsorption.
基金financially supported by the National Natural Science Foundation of China(51802091,51902102,22075074)Outstanding Young Scientists Research Funds from Hunan Province(2020JJ2004)+2 种基金Major Science and Technology Program of Hunan Province(2020WK2013)Creative Research Funds from Hunan Province(2018RS3046)Natural Science Foundation of Hunan Province(2020JJ5035)。
文摘Oxygen-containing functional groups were found to e ectively boost the K^(+)storage performance of carbonaceous materials,however,the mechanism behind the performance enhancement remains unclear.Herein,we report higher rate capability and better long-term cycle performance employing oxygen-doped graphite oxide(GO)as the anode material for potassium ion batteries(PIBs),compared to the raw graphite.The in situ Raman spectroscopy elucidates the adsorption-intercalation hybrid K^(+)storage mechanism,assigning the capacity enhancement to be mainly correlated with reversible K^(+)adsorption/desorption at the newly introduced oxygen sites.It is unraveled that the C=O and COOH rather than C-O-C and OH groups contribute to the capacity enhancement.Based on in situ Fourier transform infrared(FT-IR)spectra and in situ electrochemical impedance spectroscopy(EIS),it is found that the oxygen-containing functional groups regulate the components of solid electrolyte interphase(SEI),leading to the formation of highly conductive,intact and robust SEI.Through the systematic investigations,we hereby uncover the K^(+)storage mechanism of GO-based PIB,and establish a clear relationship between the types/contents of oxygen functional groups and the regulated composition of SEI.
基金financially supported by the National Natural Science Foundation of China (Nos.11765010,51704136)the Applied Basic Research Programs of Yunnan Provincial Science and Technology Department (No.2016FB087)the Freely Exploring Fund for Academicians in Yunnan Province (No.2018HA006)
文摘In this study,impurity-free porous graphene(PG) with intrinsic pore structure was synthesized through a facile acid-alkali etching-assisted sonication approach.The pore structure appears on the surface of graphene sheets due to intrinsic defects of graphene.The PG possessed an extremely high specific surface area of 2184 m^2/g,the size of^5 μm and layer numbers of 3-8.Additionally,PG contained micropores and mesopores simultaneously,with an average pore diameter of approximately 3 nm.The effects of acid,alkali,and ultrasound treatment on PG preparation were elucidated by transmission electron microscopy and fourier transform infrared spectroscopy.First,in an acidic solution,oxygen-containing functional groups(hydroxyls,carboxyl,and epoxides) were formed due to the hydrolysis of sulfate and continuous transformations of these functional groups on graphene oxide.Second,under the synergistic effects of alkali and ultrasound treatment,PG was obtained due to the loss of carboxyl and epoxide groups.A new route for preparing PG was provided by the proposed method.
基金funding of the National Key Research and Development Plan(Grant 2017YFB0306600)the Project of SINOPEC(NO.117006).
文摘To prepare a highly efficient NiMo/Al_(2)O_(3) hydrodesulfurization catalyst,the combined effects of specific organic functional groups and alumina surface characteristics were investigated.First,the correlation between the surface characteristics of four different alumina and the existing Mo species states was established.It was found that the Mo equilibrium adsorption capacity can be used as a specific descriptor to quantitatively evaluate the changes in surface characteristics of different alumina.A lower Mo equilibrium adsorption capacity for alumina means weaker metal-support interaction and the loaded Mo species are easier to transform into MoS2.However,the Mo-O-Al bonds still exist at the metal-support interface.The introduction of cationic surfactant hecadecyl trimethyl ammonium bromide(CTAB)can further improve Mo species dispersion through electrostatic attraction with Mo anions and interaction of its alkyl chain with the alumina surface;meanwhile,the introduction of ethylenediamine tetraacetic acid(EDTA)can complex with Ni ions to enhance the Ni-promoting effect on Mo.Therefore,the NiMo catalyst designed using alumina with lower Mo equilibrium adsorption capacity and the simultaneous addition of EDTA and CTAB exhibits the highest hydrodesulfurization activity for 4,6-dimethyl dibenzothiophene because of its proper metal-support interaction and more well-dispersed Ni-Mo-S active phases.
基金Supported by the National Natural Science Foundation of China(Nos.U22A20616,32071573)。
文摘Global warming has caused an increase in the frequency and duration of droughts worldwide.Droughts could trigger large changes in physico-chemical conditions and phytoplankton community in waterbodies,resulting in a shift in the phytoplankton community.Spring diatom blooms in reservoirs have been increasingly observed in the past decade in the Taihu Lake basin.The aim of the present study is to elucidate the impacts of droughts on aquatic environment and to determine the driving factors for the succession of the phytoplankton functional groups based on the analysis of data collected during spring from 2009 to 2020 in the Daxi Reservoir.The unimodal relationship between 1-month aggregated precipitation index and phytoplankton species richness indicated the competitive exclusion occurred in extremely drought period.The structural equation modeling indicated that drought-related low water level conditions intensified sediment resuspension,and increased the phosphorus-enriched nonalgal turbidity in the Daxi Reservoir.Concurrently,a steady shift in the Reynolds phytoplankton functional groups from L 0,TD,J,X 2,and A(phytoplankton taxa preferring low turbidity and nutrient conditions)to TB(pennate diatoms being adapt to turbid and nutrient-rich conditions)was observed.The increased TP and non-algal turbidity in addition to the lowered disturbance contribute to the prevalence of Group TB.Considering the difficulties in nutrient control,timely water replenishment is often a feasible method of controlling the dominance of harmful algae for reservoir management.Finally,alternative water sources are in high demand for ensuring ecological safety and water availability when dealing with drought.
基金supported by the Natural Science Foundation of Yunnan Province(Grant No:202301AT070356)the Open Fund of the Key Laboratory of Tropical Forest Ecology,Chinese Academy of Sciences,National Science Foundation of China(Grant No.32061123003)+1 种基金the Joint Fund of the National Natural Science Foundation of China-Yunnan Province(Grant No.U1902203)the Field Station Foundation of the Chinese Academy of Sciences.
文摘Anthropogenic disturbances are widespread in tropical forests and influence the species composition in the overstory.However,the impacts of historical disturbance on tropical forest overstory recovery are unclear due to a lack of disturbance data,and previous studies have focused on understory species.In this study,the purpose was to deter-mine the influence of historical disturbance on the diver-sity,composition and regeneration of overstory species in present forests.In the 20-ha Xishuangbanna tropical sea-sonal rainforest dynamics plot in southwestern China,the historical disturbance boundaries were delineated based on panchromatic photographs from 1965.Factors that drove species clustering in the overstory layer(DBH≥40 cm)were analyzed and the abundance,richness and composition of these species were compared among different tree groups based on multiple regression tree analysis.The coefficient of variation of the brightness value in historical panchro-matic photographs from 1965 was the primary driver of spe-cies clustering in the overstory layer.The abundance and richness of overstory species throughout the regeneration process were similar,but species composition was always different.Although the proportion of large-seeded and vigorous-sprouting species showed no significant differ-ence between disturbed and undisturbed forests in the tree-let layer(DBH<20 cm),the difference became significant when DBH increased.The findings highlight that historical disturbances have strong legacy effects on functional group composition in the overstory and the recovery of overstory species was multidimensional.Functional group composi-tion can better indicate the dynamics of overstory species replacement during secondary succession.
基金Supported by National Natural Science Foundation of China(30370146)~~
文摘[Objective]The aim was to carry out stoichiometry on the early-spring herbs functional group in subtropical artificial wetland.[Method]UV-Vis spectrophotometer was used for the determination of nitrate-nitrogen,ammonium nitrogen and phosphorus concentrations.Potassium persulfate absorptiometry was used for the measurement of total N content,while the flame photometer was used to detect the potassium and sodium concentration in plants.All the nutrient determination of plant samples were repeated for four times.[Result]The four nutrient concentrations in almost all samples were in the normal range of natural plant nutrition concentrations;in early-spring herbs functional groups,different species showed diversity on the nutrient concentrations;plant height had no significant effect on the nutrient concentrations in plants;the nutrient concentrations of non-grass group plants were higher than that of grass group plants;the nutrient concentrations of the annual herb were higher than that of perennial herbs.[Conclusion]The study had provided basis for the understanding of the effects of changes in nutritional conditions on species diversity,community structure and succession of the system.
基金supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT)(No. 2021R1I1A1A0105621313, No. 2022R1F1A1074441, No. 2022K1A3A1A20014496, and No. 2022R1F1A1074083)supported by the Ministry of Education Funding (No. RIS 2021-004)supported by the Brain Pool program funded by the Ministry of Science and ICT through the National Research Foundation of Korea (RS-2023-00284318).
文摘In this study,precise control over the thickness and termination of Ti3C2TX MXene flakes is achieved to enhance their electrical properties,environmental stability,and gas-sensing performance.Utilizing a hybrid method involving high-pressure processing,stirring,and immiscible solutions,sub-100 nm MXene flake thickness is achieved within the MXene film on the Si-wafer.Functionalization control is achieved by defunctionalizing MXene at 650℃ under vacuum and H2 gas in a CVD furnace,followed by refunctionalization with iodine and bromine vaporization from a bubbler attached to the CVD.Notably,the introduction of iodine,which has a larger atomic size,lower electronegativity,reduce shielding effect,and lower hydrophilicity(contact angle:99°),profoundly affecting MXene.It improves the surface area(36.2 cm^(2) g^(-1)),oxidation stability in aqueous/ambient environments(21 days/80 days),and film conductivity(749 S m^(-1)).Additionally,it significantly enhances the gas-sensing performance,including the sensitivity(0.1119Ωppm^(-1)),response(0.2% and 23%to 50 ppb and 200 ppm NO_(2)),and response/recovery times(90/100 s).The reduced shielding effect of the–I-terminals and the metallic characteristics of MXene enhance the selectivity of I-MXene toward NO2.This approach paves the way for the development of stable and high-performance gas-sensing two-dimensional materials with promising prospects for future studies.
文摘The activated carbon with high surface area was prepared by KOH activation.It was further modified by H2SO4 and HNO3 to introduce more surface functional groups.The pore structure of the activated carbons before and after modification was analyzed based on the nitrogen adsorption isotherms.The morphology of those activated carbons was characterized using scanning electronic microscopy (SEM).The surface functional groups were determined by Fourier transform infrared spectroscopy (FTIR).The quantity of those groups was measured by the Boehm titration method.Cr(VI) removal by the activated carbons from aqueous solution was investigated at different pH values.The results show that compared with H2SO4,HNO3 destructs the original pore of the activated carbon more seriously and induces more acidic surface functional groups on the activated carbon.The pH value of the solution plays a key role in the Cr(VI) removal.The ability of reducing Cr(VI) to Cr(III) by the activated carbons is relative to the acidic surface functional groups.At higher pH values,the Cr(VI) removal ratio is improved by increasing the acidic surface functional groups of the activated carbons.At lower pH values,however,the acidic surface functional groups almost have no effect on the Cr(VI) removal by the activated carbon from aqueous solution.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB03030401 & XDA05060700)the National Natural Science Foundation of China (Grant Nos. 41171044, 31070391, 41271067)the General Financial Grant from the China Postdoctoral Science Foundation (Grant No. 2013M530716)
文摘Variations in the fractions of biomass allocated to functional components are widely considered as plant responses to resource availability for grassland plants. Observations indicated shoots isometrically relates to roots at the community level but allometrically at the species level in Tibetan alpine grasslands. These differences may result from the specific complementarity of functional groups between functional components, such as leaf, root, stem and reproductive organ. To test the component complementary responses to regional moisture variation, we conducted a multi-site transect survey to measure plant individual size and component biomass fractions of common species belonging to the functional groups: forbs, grasses, legumes and sedges on the Northern Tibetan Plateau in peak growing season in 2010. Along the mean annual precipitation (MAP) gradient, we sampled 7o species, in which 2o are in alpine meadows, 20 in alpine steppes, 15 in alpine desert-steppes and 15 in alpine deserts, respectively. Our results showed that the size of alpine plants is small with individual biomass mostly lower than 1.0 g. Plants keep relative conservative component individual responses moisture functional fractions across alpine grasslands at the level. However, the complementary between functional components to variations specifically differ among groups. These results indicate that functional group diversity may be an effective tool for scaling biomass allocation patterns from individual up to community level. Therefore, it is necessary andvaluable to perform intensive and systematic studies on identification and differentiation the influences of compositional changes in functional groups on ecosystem primary services and processes.
基金Funded by the National Natural Science Foundation of China(No.51808369)the Natural Science Foundation of the Jiangsu Higher Education Institutions of China(No.18KJB560016)+3 种基金the Opening Project of State Key Laboratory of Green Building Materials(No.YA-615)the State Key Laboratory of Silicate Materials for Architectures(No.SYSJJ2018-09)Science and Technology Project of Jiangsu Provincal Department of Housing and Urban-Rural Construction(No.2018ZD049)the Natural Science Foundation of Suzhou University of Science and Technology(No.XKQ2018009)
文摘The adsorption behaviors and dispersing properties of polycarboxylate superplasticizer(PCE) with different functional groups were systematically analyzed to reveal the theory and methods of modifying PCE molecular structures and regulating PCE performances. By substituting carboxylic groups with sulfonic groups, ester groups or acylamino groups, respectively, modified PCEs with different functional groups were synthesized. Results show that introducing low amount of ester groups or sulfonic groups into the PCE molecules has no negative effects on the fluidity of cement paste, while introducing acylamino groups into PCE molecules significantly weakens the fluidity of cement paste. At low amount(when the molar ratio of sodium methallyl sulfonate to TPEG is lower than 0.4), the rapid adsorption of sulfonic groups onto the cement particles contributes to the high dispersing performance of the sulfonic group modified PCEs. When the substitution ratio of acrylic acid by sulfonic acid is higher than 0.4, the viscosity and the yield stress of cement paste increases sharply. Redundant sulfonic groups lead to the excessive charge density of the PCE, which contributes to the inhomogeneous adsorption on the cement grains and hence results in the decline of the dispersing performance. Substitution of carboxylic group by acylamino group or ester group slightly changes the viscosity as well as the yield stress of cement paste. Introducing sulfonic group into PCE molecule improves the adsorption behavior of PCEs, while introducing ester group or acylamino group into PCE depresses the adsorption properties.
基金supported by the National Science Foundation of China(Nos.41172143 and 40872101)Developmental Plan of Basic Research on Natural Science of Shanxi Province(20012JM5005)Science Research Plan of Shanxi education department(12JK0483)
文摘The relationship between trace elements in coal and organic functional groups of coal, also some of aromatic structure, was investigated by using curve fitting of infrared spectra. Cluster analysis was also performed according to the degree of affinity of organic groups to the trace elements. The results show that there is a possibility that trace elements, especially LREE, were bound to peripheral organic functional groups of middle rank coal macromolecule. The most possible functional group that binds trace element is the hydroxyl, and to the less degree, the asymmetric -CH3 and 〉CH2 stretching, -CH3 stretching, etc. The degree of affinity of trace elements to different functional groups varies. The tendency obeys the natural structural changing law of trace elements-- the periodic law. The deviation of some trace elements from this regular trend is attributed to the deviation of intrinsic "confusion degree" (conventional molar entropy) of the matter system of coal basin, which is affected by the inner and outer factors during the evolution.
基金Funded by the National Nature Science Foundation of China(No.51521001)
文摘The functional groups on graphene sheets surface affect their dispersion and interfacial adhesion in polymer matrix. We compared the mechanical property of polymethymethacrylate(PMMA) microcellular foams reinforced with graphene oxide(GO) and reduced graphene oxide(RGO) to investigate this influence of functional groups. RGO sheets were fabricated by solvent thermal reduction in DMF medium. UV-Vis, FT-IR and XPS analyses indicate the difference of oxygen-containing groups on GO and RGO sheets surface. The observation of SEM illustrates that the addition of a smaller number of GO or RGO sheets causes a fine cellular structure of PMMA foams with a higher cell density(about 1011 cells/cm3) and smaller cell sizes(about 1-2 μm) owing to their remarkable heterogeneous nucleation effect. Compared to GO reinforced foams, the RGO/PMMA foams own lower cell density and bigger cell size in their microstructure, and their compressive strength is lower even when the reinforcement contents are the same and the foam bulk density is higher. These results indicate that the oxygen-containing groups on GO sheets’ surface are beneficial to adhere CO2 to realize a larger nucleation rate, and their strong interaction with PMMA matrix improves the mechanical property of PMMA foams.
文摘Generalized functional separation of variables to nonlinear evolution equations is studied in terms of the extended group foliation method, which is based on the Lie point symmetry method. The approach is applied to nonlinear wave equations with variable speed and external force. A complete classification for the wave equation which admits functional separable solutions is presented. Some known results can be recovered by this approach.
基金The project supported by National Natural Science Foundation of China under Grant No. 10371098 and the Program for New Century Excellent Talents in Universities under Grant No. NCET-04-0968
文摘We consider the functional separation of variables to the nonlinear diffusion equation with source and convection term: ut = (A(x)D(u)ux)x + B(x)Q(u), Ax ≠ 0. The functional separation of variables to this equation is studied by using the group foliation method. A classification is carried out for the equations which admit the function separable solutions. As a consequence, some solutions to the resulting equations are obtained.
基金The authors are grateful to the financial support by the Postdoctoral Science Foundation of China(No.2003034330)the Science Foundation for mid-youth elite of Shangdong Province+1 种基金the Natural Science Foundation of Shangdong Province(No.Q99B15)the National Natural Science Foundation of China(No.2906008)
文摘A series of new chelating resins with incorporating heterocyclic functional groups: pyridine, thiadizole, benzothizole into macroporous chloromethylated polystyrene were synthesized via hydrophilic spacer arm of polyethylene glycol containing sulfur. These chelating resins were found to show high adsorption capacities for Ag^+, Hg^2+, Au^3+ and Pd^2+, and the presence of spacer arm can enhance adsorption ability due to increase the hydrophilicity of the chelating resins.
基金supported by the National Natural Science Foundation of China,No.30571913a grant from the Science and Technology Project of Guangdong Province of China,No.2013B010404019+1 种基金the Natural Science Foundation of Guangdong Province of China,No.9151008901000006the Medical Scientific Research Foundation of Guangdong Province of China,No.A2009173
文摘The three-dimensional(3D) visualization of the functional bundles in the peripheral nerve provides direct and detailed intraneural spatial information. It is useful for selecting suitable surgical methods to repair nerve defects and in optimizing the construction of tissue-engineered nerve grafts. However, there remain major technical hurdles in obtaining, registering and interpreting 2D images, as well as in establishing 3D models. Moreover, the 3D models are plagued by poor accuracy and lack of detail and cannot completely reflect the stereoscopic microstructure inside the nerve. To explore and help resolve these key technical problems of 3D reconstruction, in the present study, we designed a novel method based on re-imaging techniques and computer image layer processing technology. A 20-cm ulnar nerve segment from the upper arm of a fresh adult cadaver was used for acetylcholinesterase(ACh E) staining. Then, 2D panoramic images were obtained before and after ACh E staining under the stereomicroscope. Using layer processing techniques in Photoshop, a space transformation method was used to fulfill automatic registration. The contours were outlined, and the 3D rendering of functional fascicular groups in the long-segment ulnar nerve was performed with Amira 4.1 software. The re-imaging technique based on layer processing in Photoshop produced an image that was detailed and accurate. The merging of images was accurate, and the whole procedure was simple and fast. The least square support vector machine was accurate, with an error rate of only 8.25%. The 3D reconstruction directly revealed changes in the fusion of different nerve functional fascicular groups. In conclusion. The technique is fast with satisfactory visual reconstruction.
基金supported by the National Natural Science Foundation of China(No.51606081)the Basic Research Foundation of Shenzhen(No.JCYJ20160506170043770)
文摘In order to explore the influence of modification sites of functional groups on landfill gas (CO2/CH4) separation performance of metal-organic frameworks (MOFs), six types of or- ganic linkers and three types of functional groups (i.e. -F, -NH2, -CH3) were used to construct 36 MOFs of pcu topology based on copper paddlewheel. Grand canonical Monte Carlo sim- ulations were performed in this work to evaluate the separation performance of MOFs at low (vacuum swing adsorption) and high (pressure swing adsorption) pressures, respectively. Simulation results demonstrated that CO2 working capacity of the unfunctionalized MOFs generally exhibits pore-size dependence at 1 bar, which increases with the decrease in pore sizes. It was also found that -NH2 funetionalized MOFs exhibit the highest CO2 uptake due to the enhanced Coulombic interactions between the polar -NH2 groups and the quadrupole moment of CO2 molecules, which is followed by -CH3 and -F functionalized ones. Moreover, positioning the functional groups -NH2 and -CH3 at sites far from the metal node (site b) exhibits more significant enhancement on CO2/CH4 separation performance compared to that adjacent to the metal node (site a).
基金Supported by the Department of Science and Technology of Guizhou Province(Nos.[2014]7001,[2015]2001,[2015]10)the Water Resources Department of Guizhou Province(No.KT201401)
文摘Phytoplankton and environment factors were investigated in 2015 and phytoplankton functional groups were used to understand their temporal and spatial distribution and their driving factors in Wanfeng Reservoir. Seventeen functional groups(B, D, E, F, G, J, Lo, MP, P, S1, T, W1, W2, X1, X2, Xph, Y) were identified based on 34 species. The dominant groups were: J/B/P/D in dry season, X1/J/Xph/G/T in normal season and J in flood season. Phytoplankton abundance ranged from 5.33×10~4 cells/L to 3.65×10~7 cells/L, with the highest value occurring in flood season and lowest in dry season. The vertical profi le of dominant groups showed little differentiation except for P, which dominated surface layers over 20 m as a result of mixing water masses and higher transparency during dry season. However, the surface waters presented higher values of phytoplankton abundance than other layers, possibly because of greater irradiance. The significant explaining variables and their ability to describe the spatial distribution of the phytoplankton community in RDA diff ered seasonally as follows: dry season, NH4-N, NO_3-N, NO_2-N, TN:TP ratio and transparency(SD); normal season, temperature(WT), water depth, TN, NH4-N and NO_3-N; flood season, WT, water depth, NO_3-N and NO_2-N. Furthermore, nitrogen, water temperature, SD and water depth were significant variables explaining the variance of phytoplankton communities when datasets included all samples. The results indicated that water physical conditions and hydrology were important in phytoplankton community dynamics, and nitrogen was more important than phosphorus in modifying phytoplankton communities. Seasonal differences in the relationship between the environment and phytoplankton community should be considered in water quality management.
基金supported by grants from the Natural Sciences and Engineering Research Council of Canada (NSERC)SaskCanola Funding+1 种基金Saskatchewan Agricultural Development Fund (ADF)Ministry of Agriculture Strategic Research Chair Fund (Saskatchewan,Canada)
文摘In complex feed structures, there exist main chemical functional groups which are associated with nutrient utilization and availability and functionality. Each functional group has unique molecular structure therefore produce unique molecular vibration spectral profile. Feed processing has been used to improve nutrient utilization for many years. However, to date, there was little study on processing-induced changes of feed intrinsic structure and functional groups on a molecular basis within intact tissue. This is because limited research technique is available to study inherent structure on a molecular basis. Recently bioanalytical techniques: such as Synchrotron Infrared Microspectroscopy as well as Diffuse Reflectance Infrared Fourier Transform molecular spectroscopy have been developed. These techniques enable to detect molecular structure change within intact tissues. These techniques can prevent destruction or alteration of the intrinsic protein structures during processing for analysis. However, these techniques have not been used in animal feed and nutrition research. The objective of this review was show that with the advanced technique, sensitivity and responses of functional groups to feed processing on a molecular basis could be detected in my research team. These functional groups are highly associated with nutrient utilization in animals.