Geothermal resources are a promising approach to clean renewable energy;90%of them are deep reservoirs of hot dry rock that require hydraulic fracturing to create a network of connections among wells to enable efficie...Geothermal resources are a promising approach to clean renewable energy;90%of them are deep reservoirs of hot dry rock that require hydraulic fracturing to create a network of connections among wells to enable efficient heat exchange,known as an Enhanced Geothermal System(EGS).The Pohang EGS project in south Korea led to a devasting Mw5.5 earthquake,triggered by the reservoir's EGS stimulation,the largest earthquake known to have been induced by EGS development.Detailed investigations have been conducted to understand the cause of the Pohang earthquake;the conclusion has been that overpressurized injected fluids migrated into an unknown fault triggering this large earthquake.Detailed velocity images for the source zone of the 2017 Pohang earthquake,which could be helpful for further understanding its inducing mechanism,are unavailable.However,we have assembled detailed aftershock data recorded by 41 local stations installed within about three months after the Mw5.5 Pohang earthquake,and have then applied the V_(p)/V_(s)model's consistency-constrained double-difference seismic tomography method to determine the high-resolution three-dimensional Vp(compressional wave velocity),Vs(shear wave velocity),and V_(p)/V_(s)models of the source region that we report here,as well as earthquake locations within the source region.The velocity images reveal that the deep source area of the 2017 Pohang earthquake is dominated by low Vp,high Vs,and low V_(p)/V_(s)anomalies,a pattern that can be caused by overpressurized vapors due to high temperatures at these depths.Based on aftershock locations and velocity features,our studies support the conclusion that the 2017Pohang earthquake was triggered by injected EGS fluids that migrated into a blind fault.展开更多
在感应式无线电能传输系统的实际应用中,通常需要系统输出电压保持恒定。采用一种基于串并/串(SP/S)谐振补偿的感应式无线电能传输系统拓扑结构,当系统发射端和接收端的相对位置确定并采用定频控制时,该结构在全负载范围内具备接收端输...在感应式无线电能传输系统的实际应用中,通常需要系统输出电压保持恒定。采用一种基于串并/串(SP/S)谐振补偿的感应式无线电能传输系统拓扑结构,当系统发射端和接收端的相对位置确定并采用定频控制时,该结构在全负载范围内具备接收端输出恒压特性。同时分析了随着横向偏移的变化,系统输出恒压增益的变化特性。最后,设计了一个6.6 k W、20 k Hz定频控制的感应式无线电能传输实验系统,验证了所采用的SP/S谐振补偿拓扑结构的可行性和有效性。展开更多
基金supported by the National Natural Science Foundation of China(42304056)the Natural Science Foundation of Hebei Province(D2023305007)+1 种基金supported by the Basic Research Project(GP2020-017,GP2020027)of the Korea Institute of Geoscience and Mineral Resources(KIGAM)funded by the Ministry of Science and ICT of Korea。
文摘Geothermal resources are a promising approach to clean renewable energy;90%of them are deep reservoirs of hot dry rock that require hydraulic fracturing to create a network of connections among wells to enable efficient heat exchange,known as an Enhanced Geothermal System(EGS).The Pohang EGS project in south Korea led to a devasting Mw5.5 earthquake,triggered by the reservoir's EGS stimulation,the largest earthquake known to have been induced by EGS development.Detailed investigations have been conducted to understand the cause of the Pohang earthquake;the conclusion has been that overpressurized injected fluids migrated into an unknown fault triggering this large earthquake.Detailed velocity images for the source zone of the 2017 Pohang earthquake,which could be helpful for further understanding its inducing mechanism,are unavailable.However,we have assembled detailed aftershock data recorded by 41 local stations installed within about three months after the Mw5.5 Pohang earthquake,and have then applied the V_(p)/V_(s)model's consistency-constrained double-difference seismic tomography method to determine the high-resolution three-dimensional Vp(compressional wave velocity),Vs(shear wave velocity),and V_(p)/V_(s)models of the source region that we report here,as well as earthquake locations within the source region.The velocity images reveal that the deep source area of the 2017 Pohang earthquake is dominated by low Vp,high Vs,and low V_(p)/V_(s)anomalies,a pattern that can be caused by overpressurized vapors due to high temperatures at these depths.Based on aftershock locations and velocity features,our studies support the conclusion that the 2017Pohang earthquake was triggered by injected EGS fluids that migrated into a blind fault.
文摘在感应式无线电能传输系统的实际应用中,通常需要系统输出电压保持恒定。采用一种基于串并/串(SP/S)谐振补偿的感应式无线电能传输系统拓扑结构,当系统发射端和接收端的相对位置确定并采用定频控制时,该结构在全负载范围内具备接收端输出恒压特性。同时分析了随着横向偏移的变化,系统输出恒压增益的变化特性。最后,设计了一个6.6 k W、20 k Hz定频控制的感应式无线电能传输实验系统,验证了所采用的SP/S谐振补偿拓扑结构的可行性和有效性。