Pasteurellosis is the most prevalent, extremely contagious bacterial disease among domestic rabbits and is considered the leading cause of deaths in rabbits, resulting in enormous economic losses to the rabbit industr...Pasteurellosis is the most prevalent, extremely contagious bacterial disease among domestic rabbits and is considered the leading cause of deaths in rabbits, resulting in enormous economic losses to the rabbit industry. Screening for bacterial agents causing mortalities in rabbits revealed the presence of Enterobacteriacae species in approximately 42% of studied cases, with E. coli the most commonly isolated organism. The present study was designed to evaluate the immune response of rabbits vaccinated with a locally prepared, combined inactivated vaccine of Pasteurella multocida and E. coli, adjuvanated with Montanide ISA70. A total of 370 rabbits, aged 2 - 3 weeks, were divided into four groups: (G1) vaccinated with a polyvalent P. multocida vaccine, (G2) vaccinated with a polyvalent E. coli vaccine, (G3) vaccinated with a combined inactivated Montanide ISA70 vaccine of P. multocida and E. coli, and (G4) kept as a non-vaccinated control group. All rabbits received two doses of 0.5 ml of the prepared vaccines, administered one month apart, and were then challenged with virulent strains of P. multocida and E. coli three weeks after the second vaccination. The prepared vaccines were evaluated by determining humoral immunity using indirect haemagglutination (IHA) test and ELISA. The potency of the vaccines was assessed through challenge and determination of LD50. Experimental findings on the prepared polyvalent combined inactivated P. multocida and E. coli vaccine indicated that it is a potent vaccine, producing the highest antibody titers and a 90% protection rate against challenges with virulent strains of P. multocida type A, D2, and E. coli types O157, O151 and O125. Thus, this vaccine is promising in addressing both P. multocida and E. coli problems in rabbits, farms, providing significant protection, and we recommend its commercial production to help rabbit producers control these two major bacterial infections.展开更多
Selenium nanoparticles(SeNPs)have been demonstrated potential for use in diseases associated with oxidative stress.Functionalized SeNPs with lower toxicity and higher biocompatibility could bring better therapeutic ac...Selenium nanoparticles(SeNPs)have been demonstrated potential for use in diseases associated with oxidative stress.Functionalized SeNPs with lower toxicity and higher biocompatibility could bring better therapeutic activity and clinical application value.Herein,this work was conducted to investigate the protective effect of Pleurotus tuber-regium polysaccharide-protein complex funtionnalized SeNPs(PTR-SeNPs)against acetaminophen(APAP)-induced oxidative injure in HepG2 cells and C57BL/6J mouse liver.Further elucidation of the underlying molecular mechanism,in particular their modulation of Nrf2 signaling pathway was also performed.The results showed that PTR-SeNPs could significantly ameliorate APAP-induced oxidative injury as evidenced by a range of biochemical analysis,histopathological examination and immunoblotting study.PTR-SeNPs could hosphorylate and activate PKCδ,depress Keap1,and increase nuclear accumulation of Nrf2,resulting in upregulation of GCLC,GCLM,HO-1 and NQO-1 expression.Besides,PTR-SeNPs suppressed the biotransformation of APAP to generate intracellular ROS through CYP 2E1 inhibition,restoring the mitochondrial morphology.Furthermore,the protective effect of PTR-SeNPs against APAP induced hepatotoxicity was weakened as Nrf2 was depleted in vivo,indicating the pivotal role of Nrf2 signaling pathway in PTR-SeNPs mediated hepatoprotective efficacy.Being a potential hepatic protectant,PTR-SeNPs could serve as a new source of selenium supplement for health-promoting and biomedical applications.展开更多
文摘Pasteurellosis is the most prevalent, extremely contagious bacterial disease among domestic rabbits and is considered the leading cause of deaths in rabbits, resulting in enormous economic losses to the rabbit industry. Screening for bacterial agents causing mortalities in rabbits revealed the presence of Enterobacteriacae species in approximately 42% of studied cases, with E. coli the most commonly isolated organism. The present study was designed to evaluate the immune response of rabbits vaccinated with a locally prepared, combined inactivated vaccine of Pasteurella multocida and E. coli, adjuvanated with Montanide ISA70. A total of 370 rabbits, aged 2 - 3 weeks, were divided into four groups: (G1) vaccinated with a polyvalent P. multocida vaccine, (G2) vaccinated with a polyvalent E. coli vaccine, (G3) vaccinated with a combined inactivated Montanide ISA70 vaccine of P. multocida and E. coli, and (G4) kept as a non-vaccinated control group. All rabbits received two doses of 0.5 ml of the prepared vaccines, administered one month apart, and were then challenged with virulent strains of P. multocida and E. coli three weeks after the second vaccination. The prepared vaccines were evaluated by determining humoral immunity using indirect haemagglutination (IHA) test and ELISA. The potency of the vaccines was assessed through challenge and determination of LD50. Experimental findings on the prepared polyvalent combined inactivated P. multocida and E. coli vaccine indicated that it is a potent vaccine, producing the highest antibody titers and a 90% protection rate against challenges with virulent strains of P. multocida type A, D2, and E. coli types O157, O151 and O125. Thus, this vaccine is promising in addressing both P. multocida and E. coli problems in rabbits, farms, providing significant protection, and we recommend its commercial production to help rabbit producers control these two major bacterial infections.
基金financially supported by National Natural Science Foundation of China(81700524)Natural Science Foundation of Fujian Province(2022J01866)from Fujian Provincial Department of Science and Technology+1 种基金Key Project of Fujian University of Traditional Chinese Medicine(X2021019)Collaborative Innovation and Platform Establishment Project of Department of Science and Technology of Guangdong Province(2019A050520003)。
文摘Selenium nanoparticles(SeNPs)have been demonstrated potential for use in diseases associated with oxidative stress.Functionalized SeNPs with lower toxicity and higher biocompatibility could bring better therapeutic activity and clinical application value.Herein,this work was conducted to investigate the protective effect of Pleurotus tuber-regium polysaccharide-protein complex funtionnalized SeNPs(PTR-SeNPs)against acetaminophen(APAP)-induced oxidative injure in HepG2 cells and C57BL/6J mouse liver.Further elucidation of the underlying molecular mechanism,in particular their modulation of Nrf2 signaling pathway was also performed.The results showed that PTR-SeNPs could significantly ameliorate APAP-induced oxidative injury as evidenced by a range of biochemical analysis,histopathological examination and immunoblotting study.PTR-SeNPs could hosphorylate and activate PKCδ,depress Keap1,and increase nuclear accumulation of Nrf2,resulting in upregulation of GCLC,GCLM,HO-1 and NQO-1 expression.Besides,PTR-SeNPs suppressed the biotransformation of APAP to generate intracellular ROS through CYP 2E1 inhibition,restoring the mitochondrial morphology.Furthermore,the protective effect of PTR-SeNPs against APAP induced hepatotoxicity was weakened as Nrf2 was depleted in vivo,indicating the pivotal role of Nrf2 signaling pathway in PTR-SeNPs mediated hepatoprotective efficacy.Being a potential hepatic protectant,PTR-SeNPs could serve as a new source of selenium supplement for health-promoting and biomedical applications.