期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Effects of metal lead on growth and mycorrhizae of an invasive plant species (Solidago canadensis L.) 被引量:12
1
作者 YANG Ruyi YU Guodong +1 位作者 TANG Jianjun CHEN Xin 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2008年第6期739-744,共6页
It is less known whether and how soil metal lead (Pb) impacts the invasion of exotic plants. A greenhouse experiment was conducted to estimate the effects of lead on the growth and mycorrhizae of an invasive species... It is less known whether and how soil metal lead (Pb) impacts the invasion of exotic plants. A greenhouse experiment was conducted to estimate the effects of lead on the growth and mycorrhizae of an invasive species (Solidago canadensis L.) in a microcosm system. Each microcosm unit was separated into HOST and TEST compartments by a replaceable mesh screen that allowed arbuscular mycorrhizal (AM) fungal hyphae rather than plant roots to grow into the TEST compartments. Three Pb levels (control, 300, and 600 mg/kg soil) were used in this study to simulate ambient soil and two pollution sites where S. canadensis grows. Mycorrhizal inoculum comprised five indigenous arbuscular mycorrhizal fungal species ( Glomus mosseae, Glomus versiform, Glomus diaphanum, Glomus geosporum, and Glomus etunicatum). The ^15N isotope tracer was used to quantify the mycorrhizally mediated nitrogen acquisition of plants. The results showed that S. canadensis was highly dependent on mycorrhizae. The Pb additions significantly decreased biomass and arbuscular mycorrhizal colonization (root length colonized, RLC%) but did not affect spore numbers, N (including total N and ^15N) and P uptake. The facilitating efficiency of mycorrhizae on nutrient acquisition was promoted by Pb treatments. The Pb was mostly sequestered in belowground of plant (root and rhizome). The results suggest that the high efficiency of mycorrhizae on nutrient uptake might give S. canadensis a great advantage over native species in Pb polluted soils. 展开更多
关键词 Solidago canadensis L. metal lead MYCORRHIZAE N and p uptake pb accumulation
下载PDF
Straw return influences the structure and functioning of arbuscular mycorrhizal fungal community in a rice-wheat rotation system
2
作者 Silong ZHAI Junjie XIE +8 位作者 Zongyi TONG Bing YANG Weiping CHEN Roger TKOIDE Yali MENG Xiaomin HUANG Atta Mohi Ud DIN Changqing CHEN Haishui YANG 《Pedosphere》 SCIE CAS CSCD 2024年第2期339-350,共12页
Straw return is a sustainable soil fertility-building practice,which can affect soil microbial communities.However,how straw return affects arbuscular mycorrhizal fungi(AMF)is not well explored.Here,we studied the imp... Straw return is a sustainable soil fertility-building practice,which can affect soil microbial communities.However,how straw return affects arbuscular mycorrhizal fungi(AMF)is not well explored.Here,we studied the impacts of different straw management treatments over eight years on the structure and functioning of AMF communities in a rice-wheat rotation system.The straw management treatments included no tillage with no straw(NTNS),rotary tillage straw return(RTSR),and ditch-buried straw return(DBSR).The community structure of AMF was characterized using high-throughput sequencing,and the mycorrhizal functioning was quantified using an in situ mycorrhizal-suppression treatment.Different straw management treatments formed unique AMF community structure,which was closely related to changes in soil total organic carbon,available phosphorus,total nitrogen,ammonium,and nitrate.When compared with NTNS,RTSR significantly increased Shannon diversity in 0–10 cm soil layer,while DBSR increased it in 10–20 cm soil layer;DBSR significantly increased hyphal length density in the whole ploughing layer(0–20 cm),but RTSR only increased it in the subsurface soil layer(10–20 cm).The mycorrhizal responses of shoot biomass and nutrient(N and P)uptake were positive under both straw return treatments(RTSR and DBSR),but negative under NTNS.The community composition of AMF was significantly correlated to hyphal length density,and the latter was further a positive predictor for the mycorrhizal responses of plant growth and nutrient uptake.These findings suggest that straw return can affect AMF community structure and functioning,and farmers should manage mycorrhizas to strengthen their beneficial effects on crop production. 展开更多
关键词 community structure hyphal length density shoot biomass shoot N uptake shoot p uptake soil physicochemical properties straw management TILLAGE
原文传递
Impacts of chicken manure and peat-derived biochars and inorganic P alone or in combination on phosphorus fractionation and maize growth in an acidic ultisol 被引量:1
3
作者 Muhammad Aqeel Kamran Ren-Kou Xu +2 位作者 Jiu-yu Li Jung Jiang Ren-Yong Shi 《Biochar》 2019年第3期283-291,共9页
The forms of phosphorus(P)in animal manure and peat are different from synthetic P fertilizers and will affect soil P fractions when they are used as P amendments.Effects of chicken manure(CMB)and peat(PB)derived bioc... The forms of phosphorus(P)in animal manure and peat are different from synthetic P fertilizers and will affect soil P fractions when they are used as P amendments.Effects of chicken manure(CMB)and peat(PB)derived biochars(CMB and PB)alone or in combination with P fertilizer(KH_(2)PO_(4))and rock phosphate(RP)on plant/soil health and soil P fractions in an acidic ultisol were examined with greenhouse pot experiments.The total P rate was constant at 120 mg kg^(−1) in all treatments.Soil P fractions,P uptake,and maize growth were determined after 56 days.Application of CMB combined with P fertilizer or alone significantly increased soil pH,water extractable and relatively labile P,dry matter yield of maize,chlorophyll contents in maize leaves,while decreasing the Fe and Al binding P.Moreover,sole application of CMB and PB showed greater effects than application of P fertilizer alone regarding plant growth and P fractionation.Integration of syn-thetic inorganic P sources with CMB or sole application of CMB is more beneficial than application of inorganic P sources to improve plant growth and P availability. 展开更多
关键词 Acidic soil Manure-derived biochar peat-derived biochar Inorganic p fertilizer p fractions plant p uptake
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部