Based on the measurement of the arrival time of maxima magnitude from band-pass filtering signals which were determined using a new Morlet wavelet multiple-filter method, we develop a method for measuring intrinsic an...Based on the measurement of the arrival time of maxima magnitude from band-pass filtering signals which were determined using a new Morlet wavelet multiple-filter method, we develop a method for measuring intrinsic and attenuative dispersion of the first cycle direct P-wave. We determine relative group delays of spectral components of direct P-waves for 984 ray paths from SML and ALS stations of the Taiwan Central Weather Bureau Seismic Network (CWBSN). Using continuous relaxation model, we deduce a new transfer function that relates intrinsic dispersion to attenuation. Based on the genetic algorithm (GA), we put forward a new inversion procedure for determining which is defined the flat part of quality factor Q(ω) spectrum, τ1 and τ2 parameters. The results indicate that ① The distribution of Om values versus epicentral distance and depth show that Qm values linearly increase with increasing of epicentral distance and depth, and Qm values is clearly independent of earthquakes magnitude; ② In the different depth ranges, Qm residual show no correlation with variations in epicentral distance. Some significant changes of Qm residual with time is likely caused by pre-seismic stress accumulation, and associated with fluid-filled higher density fractures rock volume in the source area of 1999 Chi-Chi Taiwan earthquake. We confirm that Qm residual with time anomaly appears about 2.5 years before the Chi-Chi earthquake; ③ A comparison of Qm residual for different depth range between SML and ALS stations show that the level of stress has vertical and lateral difference; ④ The area near observation station with both anomalously increasing and decreasing averaged Qm residual is likely an unstable environment for future strong earthquake occurrence. This study demonstrates the capability of direct P-waves dispersion for monitoring attenuation characteristics and its state changes of anelastic medium of the Earth at short propagation distance using seismograms recorded from very small events.展开更多
AIM:To investigate the P wave dispersion as a non-invasive marker of intra-atrial conduction disturbances in patients with Wilson's disease. METHODS:We compared Wilson's disease patients (n = 18) with age matc...AIM:To investigate the P wave dispersion as a non-invasive marker of intra-atrial conduction disturbances in patients with Wilson's disease. METHODS:We compared Wilson's disease patients (n = 18) with age matched healthy subjects (n = 15) as controls. The diagnosis was based on clinical symptoms, laboratory tests (ceruloplasmin, urinary and hepatic copper concentrations). P wave dispersion, a measurement of the heterogeneity of atrial depolarization, was measured as the difference between the duration of the longest and the shortest P-waves in 12 lead electrocardiography. RESULTS:All the patients were asymptomatic on cardiological examination and have sinusal rhythm in electrocardiography. Left ventricular and left atrial diameters, left ventricular ejection fraction and left ventricular mass index were similar in both groups. The Wilson's disease patients had a significantly higher P wave dispersion compared with the controls (44.7 ± 5.8 vs 25.7 ± 2.5, P < 0.01). CONCLUSION:There was an increase in P wave dispersion in cardiologically asymptomatic Wilson's disease patients which probably represents an early stage of cardiac involvement.展开更多
Objective: The aim of the study was to investigate the impact of P-maximum and P-wave dispersion on the long term clinical outcome after successful percutaneous balloon mitral valvuloplasty (PBMV) in patients with mit...Objective: The aim of the study was to investigate the impact of P-maximum and P-wave dispersion on the long term clinical outcome after successful percutaneous balloon mitral valvuloplasty (PBMV) in patients with mitral stenosis (MS) and sinus rhythm. Also to test the correlation between P-variables and right ventricular function and pulmonary artery pressure before and after PMBV. Methods: Eighty-five patients undergoing PMBV were enrolled in this study. We evaluated P-maximum, P-minimum and P-wave dispersion before and one month after PBMV. We studied the changes in pulmonary arterial pressure (PAP), left atrial (LA) dimension, mitral diastolic gradient, and mitral valve area, in addition to the changes in right ventricular function utilizing tissue Doppler assessment both before and after PMBV, in addition the role of the P-wave dispersion in predicttion of late cardiac events. Results: There were significant decreases in mean diastolic gradient, PAP, and LA size and significant improvement in right ventricular tissue Doppler indices after PMBV. Ac- company these hemodynamic changes after PMBV. P-maximum and P-wave dispersion were found to be decreased (P < 0.001). Patients developed cardiac events during follow-up had a higher P-maximum and P-dispersion than those without late cardiac events (P < 0.001). Moreover the changes in P-maxi- mum and P-dispersion before and after PMBV in patients with cardiac events were not significant, while P-maximum and P-dispersion significantly (P < 0.002) decreased in patients without events It was revealed with linear regression and correlation analy- sis that the degree of and the changes in P-maximum and P-wave dispersion were correlated with devel- opment of late cardiac events after PMBV, with Cut-off values of ≥62.8 msec for P-wave dispersion and 118 mes for P-maximum.ROC curve showed AUC of 0.919 for P-wave dispersion and 0.913 for P-maximum (P < 0.001). Conclusion: P-wave maximum and dispersion are significantly increased in patients with mitral stenosis. These changes decreased significantly after PMBV. The P-maximum and P-wave dispersion changes were correlated with significant impairment of right dysfunction and the degree of pulmonary artery pressure. P-maximum and P-wave dispersion could be considered as independent predictors of late outcome of patients with MS after successful PMBV (AF, recurrent hospital admission, embolic phenomenon deterioration of right ventricular function).展开更多
BACKGROUND: Activation of the sympathetic nervous system plays an important role in regulating cardiovascular actions. P wave parameters can provide general information on central cardiovascular autonomic regulatory ...BACKGROUND: Activation of the sympathetic nervous system plays an important role in regulating cardiovascular actions. P wave parameters can provide general information on central cardiovascular autonomic regulatory responses, which are altered in patients with anxiety disorders and depression. In particular, there are no reports addressing changes in P wave duration and dispersion. OBJECTIVE: To compare the differences in P wave duration and P wave dispersion between patients with anxiety disorders and depression, because patients with anxiety disorders and depression develop abnormal electrocardiograms. DESIGN, TIME AND SETTING: A non-randomized concurrent controlled study was performed. Patients with depression and general anxiety disorders were admitted at the psychiatry outpatient clinics of the Medical Faculty of Duezce University of Turkey between May 2005 and October 2006. PARTICIPANTS: A total of 71 consecutive patients with depression and anxiety disorders, as well as 50 physically and mentally healthy age- and gender-matched controls were selected. METHODS: Electrocardiogram records were obtained at the time of admission to the outpatient clinics. MAIN OUTCOME MEASURES: P wave duration and P wave dispersion were measured. RESULTS: Both the maximum (Prnax) and minimum (Pmin) P wave duration were greater in patients with psychiatric disorders than in healthy controls. Pmax was significantly greater in patients with depression or anxiety disorders (Bonferroni test, P 〈 0.017). The P wave dispersion was similar between patients and controls (P 〉 0.017). P waves were similar between panic patients and other anxiety patients. Beck depression results were positively correlated with Prawn and Prnax (r= 0.374, 0.302, P = 0.013, 0.049, respectively), and not associated with P wave dispersion (P 〉 0.05). CONCLUSION: Psychiatric disorders are associated with increases in Prnax, but not with P wave dispersion. The P wave changes were associated with the degree of depression.展开更多
It becomes increasingly clear that non-uniform distribution of immiscible fluids in porous rock is particularly relevant to seismic wave dispersion. White proposed a patchy saturation model in 1975, in which spherical...It becomes increasingly clear that non-uniform distribution of immiscible fluids in porous rock is particularly relevant to seismic wave dispersion. White proposed a patchy saturation model in 1975, in which spherical gas pockets were located at the center of a liquid saturated cube. For an extremely light and compressible inner gas, the physical properties can be approximated by a vacuum with White's model. The model successfully analyzes the dispersion phenomena of a P-wave velocity in gas-water- saturated rocks. In the case of liquid pocket saturation, e.g., an oil-pocket surrounded by a water saturated host matrix, the light fluid-pocket assumption is doubtful, and few works have been reported in White's framework. In this work, Poisson's ratio, the bulk modulus, and the effective density of a dual-liquid saturated medium are formulated for the heterogeneous porous rocks containing liquid-pockets. The analysis of the difference between the newly derived bulk modulus and that of White's model shows that the effects of liquid-pocket saturation do not disappear unless the porosity approaches zero. The inner pocket fluid can no longer be ignored. The improvements of the P-wave velocity predictions are illustrated with two examples taken from experiments, i.e., the P-wave velocity in the sandstone saturated by oil and brine and the P-wave velocity for heavy oils and stones at different temperatures.展开更多
Dispersion and attenuation occur while seismic wave travels through cracks filled with fluids,which lead to the anisotropism of seismic azimuthal travel time.Based on latest rock physics models,this study aims to simu...Dispersion and attenuation occur while seismic wave travels through cracks filled with fluids,which lead to the anisotropism of seismic azimuthal travel time.Based on latest rock physics models,this study aims to simulate seismic azimuthal moveout responses(AMR) and analyze the factors affecting this attribute.By numerical modeling,it is found that the AMR is very sensitive to the parameters of the cracks,especially these related to fluid;therefore AMR has the potential to qualitatively or even quantitatively identify cracks.展开更多
基金supported by the National Science Council of Taiwan granted NSC-94-2816-M-194-004
文摘Based on the measurement of the arrival time of maxima magnitude from band-pass filtering signals which were determined using a new Morlet wavelet multiple-filter method, we develop a method for measuring intrinsic and attenuative dispersion of the first cycle direct P-wave. We determine relative group delays of spectral components of direct P-waves for 984 ray paths from SML and ALS stations of the Taiwan Central Weather Bureau Seismic Network (CWBSN). Using continuous relaxation model, we deduce a new transfer function that relates intrinsic dispersion to attenuation. Based on the genetic algorithm (GA), we put forward a new inversion procedure for determining which is defined the flat part of quality factor Q(ω) spectrum, τ1 and τ2 parameters. The results indicate that ① The distribution of Om values versus epicentral distance and depth show that Qm values linearly increase with increasing of epicentral distance and depth, and Qm values is clearly independent of earthquakes magnitude; ② In the different depth ranges, Qm residual show no correlation with variations in epicentral distance. Some significant changes of Qm residual with time is likely caused by pre-seismic stress accumulation, and associated with fluid-filled higher density fractures rock volume in the source area of 1999 Chi-Chi Taiwan earthquake. We confirm that Qm residual with time anomaly appears about 2.5 years before the Chi-Chi earthquake; ③ A comparison of Qm residual for different depth range between SML and ALS stations show that the level of stress has vertical and lateral difference; ④ The area near observation station with both anomalously increasing and decreasing averaged Qm residual is likely an unstable environment for future strong earthquake occurrence. This study demonstrates the capability of direct P-waves dispersion for monitoring attenuation characteristics and its state changes of anelastic medium of the Earth at short propagation distance using seismograms recorded from very small events.
文摘AIM:To investigate the P wave dispersion as a non-invasive marker of intra-atrial conduction disturbances in patients with Wilson's disease. METHODS:We compared Wilson's disease patients (n = 18) with age matched healthy subjects (n = 15) as controls. The diagnosis was based on clinical symptoms, laboratory tests (ceruloplasmin, urinary and hepatic copper concentrations). P wave dispersion, a measurement of the heterogeneity of atrial depolarization, was measured as the difference between the duration of the longest and the shortest P-waves in 12 lead electrocardiography. RESULTS:All the patients were asymptomatic on cardiological examination and have sinusal rhythm in electrocardiography. Left ventricular and left atrial diameters, left ventricular ejection fraction and left ventricular mass index were similar in both groups. The Wilson's disease patients had a significantly higher P wave dispersion compared with the controls (44.7 ± 5.8 vs 25.7 ± 2.5, P < 0.01). CONCLUSION:There was an increase in P wave dispersion in cardiologically asymptomatic Wilson's disease patients which probably represents an early stage of cardiac involvement.
文摘Objective: The aim of the study was to investigate the impact of P-maximum and P-wave dispersion on the long term clinical outcome after successful percutaneous balloon mitral valvuloplasty (PBMV) in patients with mitral stenosis (MS) and sinus rhythm. Also to test the correlation between P-variables and right ventricular function and pulmonary artery pressure before and after PMBV. Methods: Eighty-five patients undergoing PMBV were enrolled in this study. We evaluated P-maximum, P-minimum and P-wave dispersion before and one month after PBMV. We studied the changes in pulmonary arterial pressure (PAP), left atrial (LA) dimension, mitral diastolic gradient, and mitral valve area, in addition to the changes in right ventricular function utilizing tissue Doppler assessment both before and after PMBV, in addition the role of the P-wave dispersion in predicttion of late cardiac events. Results: There were significant decreases in mean diastolic gradient, PAP, and LA size and significant improvement in right ventricular tissue Doppler indices after PMBV. Ac- company these hemodynamic changes after PMBV. P-maximum and P-wave dispersion were found to be decreased (P < 0.001). Patients developed cardiac events during follow-up had a higher P-maximum and P-dispersion than those without late cardiac events (P < 0.001). Moreover the changes in P-maxi- mum and P-dispersion before and after PMBV in patients with cardiac events were not significant, while P-maximum and P-dispersion significantly (P < 0.002) decreased in patients without events It was revealed with linear regression and correlation analy- sis that the degree of and the changes in P-maximum and P-wave dispersion were correlated with devel- opment of late cardiac events after PMBV, with Cut-off values of ≥62.8 msec for P-wave dispersion and 118 mes for P-maximum.ROC curve showed AUC of 0.919 for P-wave dispersion and 0.913 for P-maximum (P < 0.001). Conclusion: P-wave maximum and dispersion are significantly increased in patients with mitral stenosis. These changes decreased significantly after PMBV. The P-maximum and P-wave dispersion changes were correlated with significant impairment of right dysfunction and the degree of pulmonary artery pressure. P-maximum and P-wave dispersion could be considered as independent predictors of late outcome of patients with MS after successful PMBV (AF, recurrent hospital admission, embolic phenomenon deterioration of right ventricular function).
文摘BACKGROUND: Activation of the sympathetic nervous system plays an important role in regulating cardiovascular actions. P wave parameters can provide general information on central cardiovascular autonomic regulatory responses, which are altered in patients with anxiety disorders and depression. In particular, there are no reports addressing changes in P wave duration and dispersion. OBJECTIVE: To compare the differences in P wave duration and P wave dispersion between patients with anxiety disorders and depression, because patients with anxiety disorders and depression develop abnormal electrocardiograms. DESIGN, TIME AND SETTING: A non-randomized concurrent controlled study was performed. Patients with depression and general anxiety disorders were admitted at the psychiatry outpatient clinics of the Medical Faculty of Duezce University of Turkey between May 2005 and October 2006. PARTICIPANTS: A total of 71 consecutive patients with depression and anxiety disorders, as well as 50 physically and mentally healthy age- and gender-matched controls were selected. METHODS: Electrocardiogram records were obtained at the time of admission to the outpatient clinics. MAIN OUTCOME MEASURES: P wave duration and P wave dispersion were measured. RESULTS: Both the maximum (Prnax) and minimum (Pmin) P wave duration were greater in patients with psychiatric disorders than in healthy controls. Pmax was significantly greater in patients with depression or anxiety disorders (Bonferroni test, P 〈 0.017). The P wave dispersion was similar between patients and controls (P 〉 0.017). P waves were similar between panic patients and other anxiety patients. Beck depression results were positively correlated with Prawn and Prnax (r= 0.374, 0.302, P = 0.013, 0.049, respectively), and not associated with P wave dispersion (P 〉 0.05). CONCLUSION: Psychiatric disorders are associated with increases in Prnax, but not with P wave dispersion. The P wave changes were associated with the degree of depression.
基金Project supported by the Open Foundation of SINOPEC Key Laboratory of Geophysics(No.WTYJY-WX2013-04-02)the National Key Basic Research Program of China(973 Program)(No.2014CB239006)the 12th 5-Year Basic Research Program of China National Packaging Corporation(CNPC)(No.2014A-3611)
文摘It becomes increasingly clear that non-uniform distribution of immiscible fluids in porous rock is particularly relevant to seismic wave dispersion. White proposed a patchy saturation model in 1975, in which spherical gas pockets were located at the center of a liquid saturated cube. For an extremely light and compressible inner gas, the physical properties can be approximated by a vacuum with White's model. The model successfully analyzes the dispersion phenomena of a P-wave velocity in gas-water- saturated rocks. In the case of liquid pocket saturation, e.g., an oil-pocket surrounded by a water saturated host matrix, the light fluid-pocket assumption is doubtful, and few works have been reported in White's framework. In this work, Poisson's ratio, the bulk modulus, and the effective density of a dual-liquid saturated medium are formulated for the heterogeneous porous rocks containing liquid-pockets. The analysis of the difference between the newly derived bulk modulus and that of White's model shows that the effects of liquid-pocket saturation do not disappear unless the porosity approaches zero. The inner pocket fluid can no longer be ignored. The improvements of the P-wave velocity predictions are illustrated with two examples taken from experiments, i.e., the P-wave velocity in the sandstone saturated by oil and brine and the P-wave velocity for heavy oils and stones at different temperatures.
基金Supported by Project of National Natural Science Foundation of China(No.40874057)
文摘Dispersion and attenuation occur while seismic wave travels through cracks filled with fluids,which lead to the anisotropism of seismic azimuthal travel time.Based on latest rock physics models,this study aims to simulate seismic azimuthal moveout responses(AMR) and analyze the factors affecting this attribute.By numerical modeling,it is found that the AMR is very sensitive to the parameters of the cracks,especially these related to fluid;therefore AMR has the potential to qualitatively or even quantitatively identify cracks.