Carbon(C),nitrogen(N),and phosphorus(P)are of fundamental importance for growth and nutrient dynamics within plant organs and deserve more attention at regional to global scales.However,our knowledge of how these nutr...Carbon(C),nitrogen(N),and phosphorus(P)are of fundamental importance for growth and nutrient dynamics within plant organs and deserve more attention at regional to global scales.However,our knowledge of how these nutrients vary with tree size,organ age,or root order at the individual level remains limited.We determined C,N,and P contents and their stoichiometric ratios(i.e.,nutrient traits)in needles,branches,and fine roots at different organ ages(0-3-year-old needles and branches)and root orders(1st-4th order roots)from 64 Pinus koraiensis of varying size(Diameter at breast height ranged from 0.3 to 100 cm)in northeast China.Soil factors were also measured.The results show that nutrient traits were regulated by tree size,organ age,or root order rather than soil factors.At a whole-plant level,nutrient traits decreased in needles and fine roots but increased in branches with tree size.At the organ level,age or root order had a negative effect on C,N,and P and a positive effect on stoichiometric ratios.Our results demonstrate that nutrient variations are closely related to organ-specific functions and ecophysiological processes at an individual level.It is suggested that the nutrient acquisition strategy by younger trees and organ fractions with higher nutrient content is for survival.Conversely,nutrient storage strategy in older trees and organ fractions are mainly for steady growth.Our results clarified the nutrient utilization strategies during tree and organ ontogeny and suggest that tree size and organ age or root order should be simultaneously considered to understand the complexities of nutrient variations.展开更多
Atmospheric nitrogen deposition is at a high level in some forests of South China. The effects of addition of exogenous N and P on soil organic carbon mineralization were studied to address: (1) if the atmospheric N d...Atmospheric nitrogen deposition is at a high level in some forests of South China. The effects of addition of exogenous N and P on soil organic carbon mineralization were studied to address: (1) if the atmospheric N deposition promotes soil C storage through decreasing mineralization; (2) if the soil available P is a limitation to organic carbon mineralization. Soils (0–10 cm) was sampled from monsoon evergreen broad-leaved forest (MEBF), coniferous and broad-leaved mixed forest (CBMF), and Pinus massoniana...展开更多
Partial substitution of chemical fertilizers by organic amendments is adopted widely for promoting the availability of soil phosphorus(P)in agricultural production.However,few studies have comprehensively evaluated th...Partial substitution of chemical fertilizers by organic amendments is adopted widely for promoting the availability of soil phosphorus(P)in agricultural production.However,few studies have comprehensively evaluated the effects of longterm organic substitution on soil P availability and microbial activity in greenhouse vegetable fields.A 10-year(2009–2019)field experiment was carried out to investigate the impacts of organic fertilizer substitution on soil P pools,phosphatase activities and the microbial community,and identify factors that regulate these soil P transformation characteristics.Four treatments included 100%chemical N fertilizer(4 CN),50%substitution of chemical N by manure(2 CN+2 MN),straw(2 CN+2 SN),and combined manure with straw(2 CN+1 MN+1 SN).Compared with the 4 CN treatment,organic substitution treatments increased celery and tomato yields by 6.9-13.8%and 8.6-18.1%,respectively,with the highest yields being in the 2 CN+1 MN+1 SN treatment.After 10 years of fertilization,organic substitution treatments reduced total P and inorganic P accumulation,increased the concentrations of available P,organic P,and microbial biomass P,and promoted phosphatase activities(alkaline and acid phosphomonoesterase,phosphodiesterase,and phytase)and microbial growth in comparison with the 4 CN treatment.Further,organic substitution treatments significantly increased soil C/P,and the partial least squares path model(PLS-PM)revealed that the soil C/P ratio directly and significantly affected phosphatase activities and the microbial biomass and positively influenced soil P pools and vegetable yield.Partial least squares(PLS)regression demonstrated that arbuscular mycorrhizal fungi positively affected phosphatase activities.Our results suggest that organic fertilizer substitution can promote soil P transformation and availability.Combining manure with straw was more effective than applying these materials separately for developing sustainable P management practices.展开更多
利用FACE(free air carbon dioxide enrichment)技术平台,在两种氮肥施用(低氮,LN和常规氮,NN)水平下,研究CO2浓度升高对水稻和小麦收获后根际和非根际土壤可溶性碳、有机磷、速效磷和速效钾的影响。结果表明,相对于对照CO2浓度处理,高...利用FACE(free air carbon dioxide enrichment)技术平台,在两种氮肥施用(低氮,LN和常规氮,NN)水平下,研究CO2浓度升高对水稻和小麦收获后根际和非根际土壤可溶性碳、有机磷、速效磷和速效钾的影响。结果表明,相对于对照CO2浓度处理,高CO2浓度处理在显著增加作物生物量的前提下,土壤速效磷和速效钾不但没有降低反而增加,增加幅度小麦季大于水稻季,根际大于非根际;水稻季土壤可溶性碳含量增加,且NN水平下水稻和小麦季进入土壤的可溶性碳增加,导致土壤有机磷降低幅度低于LN水平,且水稻季根际土壤大于非根际土壤,有机磷的降低是保证有效磷升高的一个重要因素,增加氮肥施用将有利于土壤有机磷的增加,对维持土壤磷的供给有积极作用,有利于作物对高CO浓度的持续响应。展开更多
A three-year (2006-2008) field experiment was conducted at Swift Current and Star City in Saskatchewan to determine the short-term in-fluence of land-applied anaerobically digested swine manure (ADSM), conventionally ...A three-year (2006-2008) field experiment was conducted at Swift Current and Star City in Saskatchewan to determine the short-term in-fluence of land-applied anaerobically digested swine manure (ADSM), conventionally treated swine manure (CTSM) and N fertilizer on total organic C (TOC), total organic N (TON), light fraction organic C (LFOC), light fraction organic N (LFON) and pH in the 0 - 7.5 and 7.5 - 15 cm soil layers, and ammonium-N, nitrate-N, extractable P, exchangeable K and sulphate-S in the 0 - 15, 15 - 30, 30 - 60, 60 - 90 and 90 - 120 cm soil layers. Treatments included spring and autumn applications of CTSM and ADSM at a 1x rate (10,000 and 7150 L·ha-1, respectively) applied each year, a 3x rate (30,000 and 21,450 L·ha-1, respectively) applied once at the beginning of the experiment, plus a treatment receiving commercial fertilizer (UAN at 60 kg·N·ha-1·yr-1) and a zero-N control. There was no effect of swine manure rate, type and application time on soil pH. Mass of TOC and TON in the 15 cm soil layer increased significantly with swine manure application compared to the control, mainly at the Swift Current site, with greater increases from 3x rate than 1x rate (by 2.21 Mg·C·ha-1 and 0.167 Mg·N·ha-1). Compared to the control, mass of LFOC and LFON in the 15 cm soil layer increased with swine manure application at sites, with greater increases from 3x rate than 1x rate (by 287 kg·C·ha-1 and 26 kg·N·ha-1 at Star City, and by 194 kg·C·ha-1 and 19·kg·N ha-1 at Swift Current). Mass of TOC and TON in soil layer was tended to be greater with ADSM than CTSM, but mass of LFOC and LFON in soil was greater with CTSM than ADSM. Mass of TOC, TON, LFOC and LFON in soil also increased with annual N fertilizer application compared to the control (by 3.2 Mg·C·ha-1 for TOC, 0.195 Mg·N·ha-1 for TON, 708 kg·C·ha-1 for LFOC and 45 kg·N·ha-1 for LFON). In conclusion, our findings suggest that the quantity and quality of organic C and N in soil can be affected by swine manure rate and type, and N fertilization even after three years, most likely by influencing inputs of C and N through crop residue, and improve soil quality.展开更多
基金supported by the National Key R&D Program of China (2022YFD2201100)Natural Science Foundation of Heilongjiang Province of China (TD2023C006)the Fundamental Research Funds for the Central Universities (2572022DS13).
文摘Carbon(C),nitrogen(N),and phosphorus(P)are of fundamental importance for growth and nutrient dynamics within plant organs and deserve more attention at regional to global scales.However,our knowledge of how these nutrients vary with tree size,organ age,or root order at the individual level remains limited.We determined C,N,and P contents and their stoichiometric ratios(i.e.,nutrient traits)in needles,branches,and fine roots at different organ ages(0-3-year-old needles and branches)and root orders(1st-4th order roots)from 64 Pinus koraiensis of varying size(Diameter at breast height ranged from 0.3 to 100 cm)in northeast China.Soil factors were also measured.The results show that nutrient traits were regulated by tree size,organ age,or root order rather than soil factors.At a whole-plant level,nutrient traits decreased in needles and fine roots but increased in branches with tree size.At the organ level,age or root order had a negative effect on C,N,and P and a positive effect on stoichiometric ratios.Our results demonstrate that nutrient variations are closely related to organ-specific functions and ecophysiological processes at an individual level.It is suggested that the nutrient acquisition strategy by younger trees and organ fractions with higher nutrient content is for survival.Conversely,nutrient storage strategy in older trees and organ fractions are mainly for steady growth.Our results clarified the nutrient utilization strategies during tree and organ ontogeny and suggest that tree size and organ age or root order should be simultaneously considered to understand the complexities of nutrient variations.
基金the National Natural Science Foundation of China (No. 30725006, 40730102)the Chinese Ecological Research Net
文摘Atmospheric nitrogen deposition is at a high level in some forests of South China. The effects of addition of exogenous N and P on soil organic carbon mineralization were studied to address: (1) if the atmospheric N deposition promotes soil C storage through decreasing mineralization; (2) if the soil available P is a limitation to organic carbon mineralization. Soils (0–10 cm) was sampled from monsoon evergreen broad-leaved forest (MEBF), coniferous and broad-leaved mixed forest (CBMF), and Pinus massoniana...
基金supported by the China Agriculture Research System of MOF and MARA(CARS-23-B04)the National Key Research and Development Program of China(2016YFD0201001)。
文摘Partial substitution of chemical fertilizers by organic amendments is adopted widely for promoting the availability of soil phosphorus(P)in agricultural production.However,few studies have comprehensively evaluated the effects of longterm organic substitution on soil P availability and microbial activity in greenhouse vegetable fields.A 10-year(2009–2019)field experiment was carried out to investigate the impacts of organic fertilizer substitution on soil P pools,phosphatase activities and the microbial community,and identify factors that regulate these soil P transformation characteristics.Four treatments included 100%chemical N fertilizer(4 CN),50%substitution of chemical N by manure(2 CN+2 MN),straw(2 CN+2 SN),and combined manure with straw(2 CN+1 MN+1 SN).Compared with the 4 CN treatment,organic substitution treatments increased celery and tomato yields by 6.9-13.8%and 8.6-18.1%,respectively,with the highest yields being in the 2 CN+1 MN+1 SN treatment.After 10 years of fertilization,organic substitution treatments reduced total P and inorganic P accumulation,increased the concentrations of available P,organic P,and microbial biomass P,and promoted phosphatase activities(alkaline and acid phosphomonoesterase,phosphodiesterase,and phytase)and microbial growth in comparison with the 4 CN treatment.Further,organic substitution treatments significantly increased soil C/P,and the partial least squares path model(PLS-PM)revealed that the soil C/P ratio directly and significantly affected phosphatase activities and the microbial biomass and positively influenced soil P pools and vegetable yield.Partial least squares(PLS)regression demonstrated that arbuscular mycorrhizal fungi positively affected phosphatase activities.Our results suggest that organic fertilizer substitution can promote soil P transformation and availability.Combining manure with straw was more effective than applying these materials separately for developing sustainable P management practices.
文摘利用FACE(free air carbon dioxide enrichment)技术平台,在两种氮肥施用(低氮,LN和常规氮,NN)水平下,研究CO2浓度升高对水稻和小麦收获后根际和非根际土壤可溶性碳、有机磷、速效磷和速效钾的影响。结果表明,相对于对照CO2浓度处理,高CO2浓度处理在显著增加作物生物量的前提下,土壤速效磷和速效钾不但没有降低反而增加,增加幅度小麦季大于水稻季,根际大于非根际;水稻季土壤可溶性碳含量增加,且NN水平下水稻和小麦季进入土壤的可溶性碳增加,导致土壤有机磷降低幅度低于LN水平,且水稻季根际土壤大于非根际土壤,有机磷的降低是保证有效磷升高的一个重要因素,增加氮肥施用将有利于土壤有机磷的增加,对维持土壤磷的供给有积极作用,有利于作物对高CO浓度的持续响应。
文摘A three-year (2006-2008) field experiment was conducted at Swift Current and Star City in Saskatchewan to determine the short-term in-fluence of land-applied anaerobically digested swine manure (ADSM), conventionally treated swine manure (CTSM) and N fertilizer on total organic C (TOC), total organic N (TON), light fraction organic C (LFOC), light fraction organic N (LFON) and pH in the 0 - 7.5 and 7.5 - 15 cm soil layers, and ammonium-N, nitrate-N, extractable P, exchangeable K and sulphate-S in the 0 - 15, 15 - 30, 30 - 60, 60 - 90 and 90 - 120 cm soil layers. Treatments included spring and autumn applications of CTSM and ADSM at a 1x rate (10,000 and 7150 L·ha-1, respectively) applied each year, a 3x rate (30,000 and 21,450 L·ha-1, respectively) applied once at the beginning of the experiment, plus a treatment receiving commercial fertilizer (UAN at 60 kg·N·ha-1·yr-1) and a zero-N control. There was no effect of swine manure rate, type and application time on soil pH. Mass of TOC and TON in the 15 cm soil layer increased significantly with swine manure application compared to the control, mainly at the Swift Current site, with greater increases from 3x rate than 1x rate (by 2.21 Mg·C·ha-1 and 0.167 Mg·N·ha-1). Compared to the control, mass of LFOC and LFON in the 15 cm soil layer increased with swine manure application at sites, with greater increases from 3x rate than 1x rate (by 287 kg·C·ha-1 and 26 kg·N·ha-1 at Star City, and by 194 kg·C·ha-1 and 19·kg·N ha-1 at Swift Current). Mass of TOC and TON in soil layer was tended to be greater with ADSM than CTSM, but mass of LFOC and LFON in soil was greater with CTSM than ADSM. Mass of TOC, TON, LFOC and LFON in soil also increased with annual N fertilizer application compared to the control (by 3.2 Mg·C·ha-1 for TOC, 0.195 Mg·N·ha-1 for TON, 708 kg·C·ha-1 for LFOC and 45 kg·N·ha-1 for LFON). In conclusion, our findings suggest that the quantity and quality of organic C and N in soil can be affected by swine manure rate and type, and N fertilization even after three years, most likely by influencing inputs of C and N through crop residue, and improve soil quality.