We study the existence and stability of monotone traveling wave solutions of Nicholson's blowflies equation with degenerate p-Laplacian diffusion.We prove the existence and nonexistence of non-decreasing smooth tr...We study the existence and stability of monotone traveling wave solutions of Nicholson's blowflies equation with degenerate p-Laplacian diffusion.We prove the existence and nonexistence of non-decreasing smooth traveling wave solutions by phase plane analysis methods.Moreover,we show the existence and regularity of an original solution via a compactness analysis.Finally,we prove the stability and exponential convergence rate of traveling waves by an approximated weighted energy method.展开更多
This paper is concerned with the following attraction-repulsion chemotaxis system with p-Laplacian diffusion and logistic source:■The system here is under a homogenous Neumann boundary condition in a bounded domainΩ...This paper is concerned with the following attraction-repulsion chemotaxis system with p-Laplacian diffusion and logistic source:■The system here is under a homogenous Neumann boundary condition in a bounded domainΩ ■ R^(n)(n≥2),with χ,ξ,α,β,γ,δ,k_(1),k_(2)> 0,p> 2.In addition,the function f is smooth and satisfies that f(s)≤κ-μs~l for all s≥0,with κ ∈ R,μ> 0,l> 1.It is shown that(ⅰ)if l> max{2k_(1),(2k_(1)n)/(2+n)+1/(p-1)},then system possesses a global bounded weak solution and(ⅱ)if k_(2)> max{2k_(1)-1,(2k_(1)n)/(2+n)+(2-p)/(p-1)} with l> 2,then system possesses a global bounded weak solution.展开更多
基金Supported by Natural Science Foundation of Xinjiang Uygur Autonomous Region(2021D01B35)Natural Science Foundation of colleges and universities in Xinjiang Uygur Au-tonomous Region(XJEDU2021Y048)Doctoral Initiation Fund of Xinjiang Institute of Engineering(2020xgy012302).
基金Natural Science Foundation of Xinjiang Uygur Autonomous Region(2021D01B35)Natural Science Foundation of colleges and universities in Xinjiang Uygur Autonomous Region(XJEDU2021Y048)。
基金partially supported by the NSFC(11971179,12371205)partially supported by the National Key R&D Program of China(2021YFA1002900)+1 种基金the Guangdong Province Basic and Applied Basic Research Fund(2021A1515010235)the Guangzhou City Basic and Applied Basic Research Fund(2024A04J6336)。
文摘We study the existence and stability of monotone traveling wave solutions of Nicholson's blowflies equation with degenerate p-Laplacian diffusion.We prove the existence and nonexistence of non-decreasing smooth traveling wave solutions by phase plane analysis methods.Moreover,we show the existence and regularity of an original solution via a compactness analysis.Finally,we prove the stability and exponential convergence rate of traveling waves by an approximated weighted energy method.
基金supported by the National Natural Science Foundation of China(12301251,12271232)the Natural Science Foundation of Shandong Province,China(ZR2021QA038)the Scientific Research Foundation of Linyi University,China(LYDX2020BS014)。
文摘This paper is concerned with the following attraction-repulsion chemotaxis system with p-Laplacian diffusion and logistic source:■The system here is under a homogenous Neumann boundary condition in a bounded domainΩ ■ R^(n)(n≥2),with χ,ξ,α,β,γ,δ,k_(1),k_(2)> 0,p> 2.In addition,the function f is smooth and satisfies that f(s)≤κ-μs~l for all s≥0,with κ ∈ R,μ> 0,l> 1.It is shown that(ⅰ)if l> max{2k_(1),(2k_(1)n)/(2+n)+1/(p-1)},then system possesses a global bounded weak solution and(ⅱ)if k_(2)> max{2k_(1)-1,(2k_(1)n)/(2+n)+(2-p)/(p-1)} with l> 2,then system possesses a global bounded weak solution.