蝗虫显微切片图像在获取的过程中不可避免地会受到噪声污染,其纹理、边缘与噪声又都属于高频分量,单独使用小波变换或偏微分方程(partial differential equation,PDE)扩散的方法都不能在有效去噪的同时保持边缘、纹理等。针对这一问题,...蝗虫显微切片图像在获取的过程中不可避免地会受到噪声污染,其纹理、边缘与噪声又都属于高频分量,单独使用小波变换或偏微分方程(partial differential equation,PDE)扩散的方法都不能在有效去噪的同时保持边缘、纹理等。针对这一问题,提出了基于自适应小波PDE的去噪算法。首先对蝗虫切片含噪图像进行sym5小波软阈值去噪,分解层数根据去噪后图像的PSNR(peak signal to noise ratio)值自适应地选择,阈值门限使用Birge-Massart处罚算法获取。然后在此去噪的基础上进行Perona-Malik(PM)模型去噪,迭代次数根据去噪后图像的PSNR值自适应地选择,梯度阈值根据图像自身的2范数获取。为了验证所提出算法的去噪性能,进行了与常用去噪算法的对比试验。试验结果表明:视觉上,采用本文算法去噪后的图像噪声点较少且边缘、纹理清晰;客观上,采用该文算法去噪后的图像PSNR值比使用维纳滤波高出2 d B左右,比使用中值滤波高出3 d B左右,比使用小波阈值去噪高出2 d B左右,比使用PM模型去噪高出1 d B左右,并且在结构相似性(structural similarity image measurement,SSIM)上采用该文算法去噪后的图像与原始图像的相似度最高。因此,将自适应小波PDE的算法应用于蝗虫切片去噪是可行的、有效的,为其后续处理提供了技术支持。展开更多
牛肉大理石花纹的丰富程度代表着脂肪含量的多少,是牛肉等级划分的重要指标。基于计算机图像的自动分级技术中图像的降噪和分割处理是大理石花纹提取的基础。该文利用多尺度区间插值小波解偏微分方程的方法对牛眼肌切面图像进行处理,基...牛肉大理石花纹的丰富程度代表着脂肪含量的多少,是牛肉等级划分的重要指标。基于计算机图像的自动分级技术中图像的降噪和分割处理是大理石花纹提取的基础。该文利用多尺度区间插值小波解偏微分方程的方法对牛眼肌切面图像进行处理,基于中心相似变换的延拓方法有效解决边界效应。处理中自适应选取配置点,提高计算效率。试验证明,该算法不仅达到降噪目的,同时还实现了对不同对象区域的保边平滑,使图像纹理和边缘更加清晰。降噪结果与传统滤波法进行对比,峰值信噪比值平均比均值滤波高9.0 d B,比中值滤波高8.2 d B,比维纳滤波高6.6 d B,结构相似性数值平均比均值滤波高0.42,比中值滤波高0.40,比维纳滤波高0.34。与大津法相比,去噪后采用灰度进行图像分割的效果更好,既能分割出大脂肪,又能分割出小脂肪,提高了牛肉等级判定的准确度。展开更多
文摘蝗虫显微切片图像在获取的过程中不可避免地会受到噪声污染,其纹理、边缘与噪声又都属于高频分量,单独使用小波变换或偏微分方程(partial differential equation,PDE)扩散的方法都不能在有效去噪的同时保持边缘、纹理等。针对这一问题,提出了基于自适应小波PDE的去噪算法。首先对蝗虫切片含噪图像进行sym5小波软阈值去噪,分解层数根据去噪后图像的PSNR(peak signal to noise ratio)值自适应地选择,阈值门限使用Birge-Massart处罚算法获取。然后在此去噪的基础上进行Perona-Malik(PM)模型去噪,迭代次数根据去噪后图像的PSNR值自适应地选择,梯度阈值根据图像自身的2范数获取。为了验证所提出算法的去噪性能,进行了与常用去噪算法的对比试验。试验结果表明:视觉上,采用本文算法去噪后的图像噪声点较少且边缘、纹理清晰;客观上,采用该文算法去噪后的图像PSNR值比使用维纳滤波高出2 d B左右,比使用中值滤波高出3 d B左右,比使用小波阈值去噪高出2 d B左右,比使用PM模型去噪高出1 d B左右,并且在结构相似性(structural similarity image measurement,SSIM)上采用该文算法去噪后的图像与原始图像的相似度最高。因此,将自适应小波PDE的算法应用于蝗虫切片去噪是可行的、有效的,为其后续处理提供了技术支持。
文摘牛肉大理石花纹的丰富程度代表着脂肪含量的多少,是牛肉等级划分的重要指标。基于计算机图像的自动分级技术中图像的降噪和分割处理是大理石花纹提取的基础。该文利用多尺度区间插值小波解偏微分方程的方法对牛眼肌切面图像进行处理,基于中心相似变换的延拓方法有效解决边界效应。处理中自适应选取配置点,提高计算效率。试验证明,该算法不仅达到降噪目的,同时还实现了对不同对象区域的保边平滑,使图像纹理和边缘更加清晰。降噪结果与传统滤波法进行对比,峰值信噪比值平均比均值滤波高9.0 d B,比中值滤波高8.2 d B,比维纳滤波高6.6 d B,结构相似性数值平均比均值滤波高0.42,比中值滤波高0.40,比维纳滤波高0.34。与大津法相比,去噪后采用灰度进行图像分割的效果更好,既能分割出大脂肪,又能分割出小脂肪,提高了牛肉等级判定的准确度。