In this paper, we get W 1,p(Rn)-boundedness for tangential maximal func- tion and nontangential maximal function , which improves J.Kinnunen, P.Lindqvist and Tananka’s results.
Let 0<β<1 andΩbe a proper open and non-empty subset of R^(n).In this paper,the object of our investigation is the multilinear local maximal operator Mβ,defined by M_(β)((f))(x)=sup_(Q(∈)xQ∈Fβ)Π_(i=1)^m1/...Let 0<β<1 andΩbe a proper open and non-empty subset of R^(n).In this paper,the object of our investigation is the multilinear local maximal operator Mβ,defined by M_(β)((f))(x)=sup_(Q(∈)xQ∈Fβ)Π_(i=1)^m1/|Q|∫_(Q)|f_(i)(y_(i))|dy_(i),where F_(β)={Q(x,l):x∈Ω,l<βd(x,Ω^(c))},Q=Q(x,l)is denoted as a cube with sides parallel to the axes,and x and l denote its center and half its side length.Two-weight characterizations for the multilinear local maximal operator M_(β)are obtained.A formulation of the Carleson embedding theorem in the multilinear setting is proved.展开更多
基金Supported by the key Academic Discipline of Zhejiang Province of China under Grant No.2005the Zhejiang Provincial Natural Science Foundation of China
文摘In this paper, we get W 1,p(Rn)-boundedness for tangential maximal func- tion and nontangential maximal function , which improves J.Kinnunen, P.Lindqvist and Tananka’s results.
基金supported partly by the Natural Science Foundation from the Education Department of Anhui Province(KJ2017A847)The second author was supported by NSFC(11671039,11871101)NSFC-DFG(11761131002).
文摘Let 0<β<1 andΩbe a proper open and non-empty subset of R^(n).In this paper,the object of our investigation is the multilinear local maximal operator Mβ,defined by M_(β)((f))(x)=sup_(Q(∈)xQ∈Fβ)Π_(i=1)^m1/|Q|∫_(Q)|f_(i)(y_(i))|dy_(i),where F_(β)={Q(x,l):x∈Ω,l<βd(x,Ω^(c))},Q=Q(x,l)is denoted as a cube with sides parallel to the axes,and x and l denote its center and half its side length.Two-weight characterizations for the multilinear local maximal operator M_(β)are obtained.A formulation of the Carleson embedding theorem in the multilinear setting is proved.
基金Supported by the National Natural Science Foundation of China(11871452,12071052the Natural Science Foundation of Henan(202300410338)the Nanhu Scholar Program for Young Scholars of XYNU。
基金Supported by by National Natural Science Foundation of China(11071053)the Natural Science Foundation of Hebei Province(A2010001482)the Key Project of Science and Research of Hebei Education Department(ZH2012080)