期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
P_1-nonconforming triangular finite element method for elliptic and parabolic interface problems 被引量:2
1
作者 Hongbo GUAN Dongyang SHI 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2015年第9期1197-1212,共16页
The lowest order Pl-nonconforming triangular finite element method (FEM) for elliptic and parabolic interface problems is investigated. Under some reasonable regularity assumptions on the exact solutions, the optima... The lowest order Pl-nonconforming triangular finite element method (FEM) for elliptic and parabolic interface problems is investigated. Under some reasonable regularity assumptions on the exact solutions, the optimal order error estimates are obtained in the broken energy norm. Finally, some numerical results are provided to verify the theoretical analysis. 展开更多
关键词 p1-nonconforming finite element method (FEM) interface problem opti-mal order error estimate
下载PDF
Maximum Norm Estimates for Finite Volume Element Method for Non-selfadjoint and Indefinite Elliptic Problems
2
作者 毕春加 《Northeastern Mathematical Journal》 CSCD 2005年第3期323-328,共6页
In this paper, we establish the maximum norm estimates of the solutions of the finite volume element method (FVE) based on the P1 conforming element for the non-selfadjoint and indefinite elliptic problems.
关键词 finite volume element method p1 conforming element max-norm esti-mate indefinite problem
下载PDF
Uniform Convergence for Finite Volume Element Method for Non-selfadjoint and Indefinite Elliptic Problems
3
作者 龙晓瀚 毕春加 《Northeastern Mathematical Journal》 CSCD 2005年第1期32-38,共7页
In this paper, we prove the existence, uniqueness and uniform convergence of the solution of finite volume element method based on the P1 conforming element for non-selfadjoint and indefinite elliptic problems under m... In this paper, we prove the existence, uniqueness and uniform convergence of the solution of finite volume element method based on the P1 conforming element for non-selfadjoint and indefinite elliptic problems under minimal elliptic regularity assumption. 展开更多
关键词 finite volume element method p1 conforming element uniform convergence non-selfadjoint and indefinite problem
下载PDF
线性双曲最优控制问题的P^(2)_(0)-P_(1)混合有限元方法的先验误差估计 被引量:1
4
作者 侯春娟 《北华大学学报(自然科学版)》 CAS 2023年第4期421-428,共8页
针对线性双曲最优控制问题,通过非标准的P^(2)_(0)-P_(1)混合有限元方法,利用椭圆投影、标准L^(2)投影、标准L^(2)-正交投影算子等理论,其中状态和对偶状态采用P^(2)_(0)-P_(1)混合有限元逼近,控制变量采用分片常数逼近,给出问题模型中... 针对线性双曲最优控制问题,通过非标准的P^(2)_(0)-P_(1)混合有限元方法,利用椭圆投影、标准L^(2)投影、标准L^(2)-正交投影算子等理论,其中状态和对偶状态采用P^(2)_(0)-P_(1)混合有限元逼近,控制变量采用分片常数逼近,给出问题模型中所有变量的先验误差估计. 展开更多
关键词 p^(2)_(0)-p_(1)混合有限元方法 最优控制 先验误差估计 线性双曲方程
下载PDF
OPTIMALITY OF LOCAL MULTILEVEL METHODS FOR ADAPTIVE NONCONFORMING P1 FINITE ELEMENT METHODS 被引量:1
5
作者 Xuejun Xu Huangxin Chen R.H.W. Hoppe 《Journal of Computational Mathematics》 SCIE CSCD 2013年第1期22-46,共25页
In this paper, a local multilevel product algorithm and its additive version are con- sidered for linear systems arising from adaptive nonconforming P1 finite element approx- imations of second order elliptic boundary... In this paper, a local multilevel product algorithm and its additive version are con- sidered for linear systems arising from adaptive nonconforming P1 finite element approx- imations of second order elliptic boundary value problems. The abstract Schwarz theory is applied to analyze the multilevel methods with Jaeobi or Gauss-Seidel smoothers per- formed on local nodes on coarse meshes and global nodes on the finest mesh. It is shown that the local multilevel methods are optimal, i.e., the convergence rate of the multilevel methods is independent of the mesh sizes and mesh levels. Numerical experiments are given to confirm the theoretical results. 展开更多
关键词 Local multilevel methods Adaptive nonconforming p1 finite element methods Convergence analysis Optimality.
原文传递
两阶不定椭圆问题的Mortar型有限体积法
6
作者 杜辰薇 徐大雷 黄建国 《复旦学报(自然科学版)》 CAS CSCD 北大核心 2002年第5期557-565,共9页
对两阶不定椭圆边值问题,研究了Mortar型P1协调元的有限体积法,证明了有限体积法解的存在唯一性,并证明了有限体积法的解与微分方程的真解的误差估计在H1范围意义下是最优的.
关键词 两阶不定椭圆问题 Mortar型有限体积法 p1协调元 偏微分方程 边值问题 误差估计
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部