Objective This study aimed to assess the associations between maternal drug use,cytochrome P450(CYP450)genetic polymorphisms,and their interactions with the risk of congenital heart defects(CHDs)in offspring.Methods A...Objective This study aimed to assess the associations between maternal drug use,cytochrome P450(CYP450)genetic polymorphisms,and their interactions with the risk of congenital heart defects(CHDs)in offspring.Methods A case-control study involving 569 mothers of CHD cases and 652 controls was conducted from November 2017 to January 2020.Results After adjusting for potential confounding factors,the results show that mothers who used ovulatory drugs(adjusted odds ratio[a OR]=2.12;95% confidence interval[CI]:1.08-4.16),antidepressants(a OR=2.56;95%CI:1.36-4.82),antiabortifacients(a OR=1.55;95%CI:1.00-2.40),or traditional Chinese drugs(a OR=1.97;95%CI:1.26-3.09)during pregnancy were at a significantly higher risk of CHDs in offspring.Maternal CYP450 genetic polymorphisms at rs1065852(A/T vs.A/A:OR=1.53,95%CI:1.10-2.14;T/T vs.A/A:OR=1.57,95%CI:1.07-2.31)and rs16947(G/G vs.C/C:OR=3.41,95%CI:1.82-6.39)were also significantly associated with the risk of CHDs in offspring.Additionally,significant interactions were observed between the CYP450 genetic variants and drug use on the development of CHDs.Conclusions In those of Chinese descent,ovulatory drugs,antidepressants,antiabortifacients,and traditional Chinese medicines may be associated with the risk of CHDs in offspring.Maternal CYP450 genes may regulate the effects of maternal drug exposure on fetal heart development.展开更多
The red imported fire ant (Solenopsis invicta) is a global major invasive pest, and has caused significant economic, social and environmental impacts since its invasion to mainland of China in 2004. To date, chemica...The red imported fire ant (Solenopsis invicta) is a global major invasive pest, and has caused significant economic, social and environmental impacts since its invasion to mainland of China in 2004. To date, chemical control has been the most effective measure. However, the long-term use of chemicals would lead to an unexpected rebound. To understand the risks and explore the mechanisms of detoxification or induction to insecticides in S. invicta, the O-demethylase activity and expression of cytochrome P450 genes of workers and queens, and the effects of chlorpyrifos and fipronil exposure in workers were investigated. Biochemical assays showed the O-demethylase activity of cytochrome P450 was significantly higher in workers than in queens (1.66-fold), and was significantly induced in workers exposed to chlorpyrifos and fipronil, reaching a maximum (3.00- and 1.95-fold) at 48 h and then decreasing dramatically compared to controls (exposed to acetone counter- part). The relative expression levels of 12 cytochrome P450 expressed sequence tags (ESTs) in workers were significantly higher than in queens (from 2.3- to 36.4-fold). Multiple cytochrome P450 genes (except 9E4) were co-up-regulated (from 1.5- to 2.86-fold) in workers exposed to fipronil. These results indicated that the increased O-demethylase activity may result from the increased transcription levels of cytochrome P450 related to detoxification of insecticides in S. invicta. It appears that cytochrome P450 plays an important role in enhanced metabolic detoxification of insecticides. At the same time, it also provides the theoretical basis for resistance management and rational usage of insecticides to control S. invicta.展开更多
Bemisia tabaci (Gennadius) is a species complex, and its two most damaging biotypes B and Q are globally distributed pests. Despite increasing biological and economic impacts, little is known about the evolutionary ...Bemisia tabaci (Gennadius) is a species complex, and its two most damaging biotypes B and Q are globally distributed pests. Despite increasing biological and economic impacts, little is known about the evolutionary mechanisms that favor their competition with native populations. Here, we investigated the genetic mutations in the P450 gene of the invasive B, Q biotypes and the native Cv population. Four mutations associated with chemical resistance, Pro-Leu, Ala-Ser, Ser-Phe and Trp-Leu, were found in the cytochrome P450 CYP6C and CYP9F genes of the B and Q biotypes. Bioassay results also revealed that both the B and Q biotypes have about 12-47 times more resistance to acephate, beta- cypermethrin, methomyl, and 5-7 times more resistance to imidacloprid insecticide than Cv population. Our results provide a molecular approach for better understanding and monitoring the pesticide resistances of invasive and native B. tabaei populations in China.展开更多
Nilaparvata lugens and Sogatella furcifera are two primary planthoppers on rice throughout Asian countries and areas. Neonicotinoid insecticides, such as imidaclo- prid (IMI), have been extensively used to control r...Nilaparvata lugens and Sogatella furcifera are two primary planthoppers on rice throughout Asian countries and areas. Neonicotinoid insecticides, such as imidaclo- prid (IMI), have been extensively used to control rice planthoppers and IMI resistance consequently occurred with an important mechanism from the over-expression of P450 genes. The induction of P450 genes by IMI may increase the ability to metabolize this insecticide in planthoppers and increase the resistance risk. In this study, the induction of P450 genes was compared in S. furcifera treated with IM] and nitromethyleneimidazole (NMI), in two planthopper species by IMI lethal dose that kills 85% of the population (LD85), and in N. lugens among three IMI doses (LD15, LD50 and LD85). When IMI and NMI at the LD85 dose were applied to S. furcifera, the expression changes in most P450 genes were similar, including the up-regulation of nine genes and down-regulation of three genes. In terms of the expression changes in 12 homologous P450 genes between N. lugens and S. furcifera treated with IMI at the LD85 dose, 10 genes had very similar patterns, such as up-regulation in seven genes, down-regulation in one gene and no significant changes in two genes. When three different IMI doses were applied to N. lugens, the changes in P450 gene expression were much different, such as up-regulation in four genes at all doses and dose-dependent regulation of the other nine genes. For example, CYP6AY1 could be induced by all IMI doses, while CYP6ER1 was only up-regulated by the LDs0 dose, although both genes were reported important in IMI resistance. In conclusion, P450 genes in two planthopper species showed similar regulation patterns in responding to IMI, and the two neonicotinoid insecticides had similar effects on P450 gene expression, although the regulation was often dose-dependent.展开更多
Objectives Clopidogrel is a prodrug that has to be converted to an active metabolite by hepatic cytochrome P450(CYP) isoenzymes to inhibit platelet aggregation.Individualvariability of platelet inhibition by clopidogr...Objectives Clopidogrel is a prodrug that has to be converted to an active metabolite by hepatic cytochrome P450(CYP) isoenzymes to inhibit platelet aggregation.Individualvariability of platelet inhibition by clopidogrel suggests a possibility for genetic factors having a significant influence on clopidogrel responsiveness.In this study,we sought to determine the association between the single nucleotide polymorphism of CYP 2C19 681G】A and the occurrence of clopidogrel resistance(CR) in Chinese.Methods The study enrolled 614 hospitalized patients who underwentsuccessful percutaneouscoronary intervention with drug-eluting stents were received the treatmentwith dual antiplatelet regimen(aspirin plus clopidogrel).All patients received loading doses of 600 mg clopidogrel and 300 mg aspirin.20μmol/L ADP-induced platelet aggregation ratio(PAR ) was assessed 24 h after clopi- dogrel administration.The maximum residual PAR≥70%was defined as CR.Genomic DNA was extracted from whole blood samples according to standard protocols,the single nucleotide polymorphism of the CYP2C19 681G】A was genotyped by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) in all the patients.Results CR was found in 126 patients(20.5%).There was CYP2C19 681G】A polymorphism in the study population.The frequencies of the three kinds of genotypes(GG,GA,A A) in CR group and non-CR (NCR)group were 32.5%,47.6%,19.8%and 48.0%, 45.0%,7.0%,respectively.The frequency of AA genotype was significantly higher in NCR group than that in CR group (OR =3.03,95%CI:1.889~5.784,P=0.003).The A allele carriers were more likely to develop clopidogrel resistance compared with that of G allele carriers(OR=1.85,95%CI: 1.392~2.459,P=0.002).Conclusions CYP2C19 681G/A polymorphism is associated with the risk of CR,and the A allele carriers may be a possible genetic susceptibility factor for patients with CR.展开更多
Coptis chinensis Franch.,also named Chinese goldthread is a member of Ranunculaceae in the order Ranunculales and represents an important lineage of early eudicots with traditional medicinal value.In our study,by usin...Coptis chinensis Franch.,also named Chinese goldthread is a member of Ranunculaceae in the order Ranunculales and represents an important lineage of early eudicots with traditional medicinal value.In our study,by using syntenic analysis combined with phylogenomic analysis of C.chinensis and four other representative genomes from basal and core eudicots,we confirmed that the WGD event in C.chinensis was shared by Aquilegia coerulea and Papaver somniferum L.and quickly occurred after Ranunculales diverged from other eudicots,likely a Ranunculales common tetraploidization(RCT).The synonymous nucleotide substitutions at synonymous sites distribution of syntenic blocks across these genomes showed that the evolutionary rate of the P.somniferum genome is faster than that of the C.chinensis genome by approximately 13.7%,possibly due to Papaveraceaes having an additional special tetraploidization event(PST).After Ks correction,the RCT dated to 115—130 million years ago(MYA),which was close to the divergence of Ranunculaceaes and Papaveraceaes approximately115.45—130.51 MYA.Moreover,we identified homologous genes related to polyploidization and speciation and constructed multiple sequence alignments with different reference genomes.Notably,the event-related subgenomes in the basal genomes all showed genomic fractionation bias,suggesting a likely allopolyploid nature of the RCT,PST and T-Alpha and T-Beta events in Tetracentron sinense.In addition,we detected that the sixteen P450 subfamilies were markedly expanded in the genomes of Ranunculales,and most of them were related to the RCT and PST events.We constructed a new platform for Early Eudicot Comparative Genomic Research(http://www.cgrpoee.top/index.html)to store more information.In summary,our findings support the WGD of C.chinensis shared by Ranunculales,which is likely an allotetraploidization event.This present effort offered new insights into the evolution of key polyploidization events and the genes related to secondary metabolites during the diversification of early eudicots.展开更多
基金supported by the National Natural Science Foundation Program of China[82073653,81803313,and 81974019]China Postdoctoral Science Foundation[2020M682644]+6 种基金Hunan Provincial Science and Technology Talent Support Project(2020TJ-N07)Natural Science Foundation of Hunan Province[2018JJ2551]Hunan Provincial Key Research and Development Program[2018SK2063 and 2018SK2062]Open Project from NHC Key Laboratory of Birth Defect for Research and Prevention[KF2020006]National Key Research and Development Program of China[2018YFA0108700 and2017YFA0105602]Postgraduate Scientific Research Innovation Project of Hunan Province[grant number CX20200271]Fundamental Research Funds for the Central Universities of Central South University[grant number 2020zzts798]。
文摘Objective This study aimed to assess the associations between maternal drug use,cytochrome P450(CYP450)genetic polymorphisms,and their interactions with the risk of congenital heart defects(CHDs)in offspring.Methods A case-control study involving 569 mothers of CHD cases and 652 controls was conducted from November 2017 to January 2020.Results After adjusting for potential confounding factors,the results show that mothers who used ovulatory drugs(adjusted odds ratio[a OR]=2.12;95% confidence interval[CI]:1.08-4.16),antidepressants(a OR=2.56;95%CI:1.36-4.82),antiabortifacients(a OR=1.55;95%CI:1.00-2.40),or traditional Chinese drugs(a OR=1.97;95%CI:1.26-3.09)during pregnancy were at a significantly higher risk of CHDs in offspring.Maternal CYP450 genetic polymorphisms at rs1065852(A/T vs.A/A:OR=1.53,95%CI:1.10-2.14;T/T vs.A/A:OR=1.57,95%CI:1.07-2.31)and rs16947(G/G vs.C/C:OR=3.41,95%CI:1.82-6.39)were also significantly associated with the risk of CHDs in offspring.Additionally,significant interactions were observed between the CYP450 genetic variants and drug use on the development of CHDs.Conclusions In those of Chinese descent,ovulatory drugs,antidepressants,antiabortifacients,and traditional Chinese medicines may be associated with the risk of CHDs in offspring.Maternal CYP450 genes may regulate the effects of maternal drug exposure on fetal heart development.
基金the National Natural Science Foundation of China (31071712) for the financial support given to the present research work
文摘The red imported fire ant (Solenopsis invicta) is a global major invasive pest, and has caused significant economic, social and environmental impacts since its invasion to mainland of China in 2004. To date, chemical control has been the most effective measure. However, the long-term use of chemicals would lead to an unexpected rebound. To understand the risks and explore the mechanisms of detoxification or induction to insecticides in S. invicta, the O-demethylase activity and expression of cytochrome P450 genes of workers and queens, and the effects of chlorpyrifos and fipronil exposure in workers were investigated. Biochemical assays showed the O-demethylase activity of cytochrome P450 was significantly higher in workers than in queens (1.66-fold), and was significantly induced in workers exposed to chlorpyrifos and fipronil, reaching a maximum (3.00- and 1.95-fold) at 48 h and then decreasing dramatically compared to controls (exposed to acetone counter- part). The relative expression levels of 12 cytochrome P450 expressed sequence tags (ESTs) in workers were significantly higher than in queens (from 2.3- to 36.4-fold). Multiple cytochrome P450 genes (except 9E4) were co-up-regulated (from 1.5- to 2.86-fold) in workers exposed to fipronil. These results indicated that the increased O-demethylase activity may result from the increased transcription levels of cytochrome P450 related to detoxification of insecticides in S. invicta. It appears that cytochrome P450 plays an important role in enhanced metabolic detoxification of insecticides. At the same time, it also provides the theoretical basis for resistance management and rational usage of insecticides to control S. invicta.
文摘Bemisia tabaci (Gennadius) is a species complex, and its two most damaging biotypes B and Q are globally distributed pests. Despite increasing biological and economic impacts, little is known about the evolutionary mechanisms that favor their competition with native populations. Here, we investigated the genetic mutations in the P450 gene of the invasive B, Q biotypes and the native Cv population. Four mutations associated with chemical resistance, Pro-Leu, Ala-Ser, Ser-Phe and Trp-Leu, were found in the cytochrome P450 CYP6C and CYP9F genes of the B and Q biotypes. Bioassay results also revealed that both the B and Q biotypes have about 12-47 times more resistance to acephate, beta- cypermethrin, methomyl, and 5-7 times more resistance to imidacloprid insecticide than Cv population. Our results provide a molecular approach for better understanding and monitoring the pesticide resistances of invasive and native B. tabaei populations in China.
基金We thank Dr. David Nelson (Department of Molecular Science, University of Tennessee, Memphis, TN, USA) and the P450 nomenclature committee for naming full-length P450s identified in this study. This study was funded by National Natural Science Foundation of China (31322045 and 31130045) and Jiangsu Science Fund for Distinguished Young Scholars (BK20130028).
文摘Nilaparvata lugens and Sogatella furcifera are two primary planthoppers on rice throughout Asian countries and areas. Neonicotinoid insecticides, such as imidaclo- prid (IMI), have been extensively used to control rice planthoppers and IMI resistance consequently occurred with an important mechanism from the over-expression of P450 genes. The induction of P450 genes by IMI may increase the ability to metabolize this insecticide in planthoppers and increase the resistance risk. In this study, the induction of P450 genes was compared in S. furcifera treated with IM] and nitromethyleneimidazole (NMI), in two planthopper species by IMI lethal dose that kills 85% of the population (LD85), and in N. lugens among three IMI doses (LD15, LD50 and LD85). When IMI and NMI at the LD85 dose were applied to S. furcifera, the expression changes in most P450 genes were similar, including the up-regulation of nine genes and down-regulation of three genes. In terms of the expression changes in 12 homologous P450 genes between N. lugens and S. furcifera treated with IMI at the LD85 dose, 10 genes had very similar patterns, such as up-regulation in seven genes, down-regulation in one gene and no significant changes in two genes. When three different IMI doses were applied to N. lugens, the changes in P450 gene expression were much different, such as up-regulation in four genes at all doses and dose-dependent regulation of the other nine genes. For example, CYP6AY1 could be induced by all IMI doses, while CYP6ER1 was only up-regulated by the LDs0 dose, although both genes were reported important in IMI resistance. In conclusion, P450 genes in two planthopper species showed similar regulation patterns in responding to IMI, and the two neonicotinoid insecticides had similar effects on P450 gene expression, although the regulation was often dose-dependent.
文摘Objectives Clopidogrel is a prodrug that has to be converted to an active metabolite by hepatic cytochrome P450(CYP) isoenzymes to inhibit platelet aggregation.Individualvariability of platelet inhibition by clopidogrel suggests a possibility for genetic factors having a significant influence on clopidogrel responsiveness.In this study,we sought to determine the association between the single nucleotide polymorphism of CYP 2C19 681G】A and the occurrence of clopidogrel resistance(CR) in Chinese.Methods The study enrolled 614 hospitalized patients who underwentsuccessful percutaneouscoronary intervention with drug-eluting stents were received the treatmentwith dual antiplatelet regimen(aspirin plus clopidogrel).All patients received loading doses of 600 mg clopidogrel and 300 mg aspirin.20μmol/L ADP-induced platelet aggregation ratio(PAR ) was assessed 24 h after clopi- dogrel administration.The maximum residual PAR≥70%was defined as CR.Genomic DNA was extracted from whole blood samples according to standard protocols,the single nucleotide polymorphism of the CYP2C19 681G】A was genotyped by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) in all the patients.Results CR was found in 126 patients(20.5%).There was CYP2C19 681G】A polymorphism in the study population.The frequencies of the three kinds of genotypes(GG,GA,A A) in CR group and non-CR (NCR)group were 32.5%,47.6%,19.8%and 48.0%, 45.0%,7.0%,respectively.The frequency of AA genotype was significantly higher in NCR group than that in CR group (OR =3.03,95%CI:1.889~5.784,P=0.003).The A allele carriers were more likely to develop clopidogrel resistance compared with that of G allele carriers(OR=1.85,95%CI: 1.392~2.459,P=0.002).Conclusions CYP2C19 681G/A polymorphism is associated with the risk of CR,and the A allele carriers may be a possible genetic susceptibility factor for patients with CR.
基金funded by the National Natural Science Foundation of China(Grant Nos.32170236 and 31501333)the Natural Science Foundation of Hebei Province(Grant No.C2020209064)the Youth Foundation of Educational Committee of Hebei Province(Grant No.QN2020139)。
文摘Coptis chinensis Franch.,also named Chinese goldthread is a member of Ranunculaceae in the order Ranunculales and represents an important lineage of early eudicots with traditional medicinal value.In our study,by using syntenic analysis combined with phylogenomic analysis of C.chinensis and four other representative genomes from basal and core eudicots,we confirmed that the WGD event in C.chinensis was shared by Aquilegia coerulea and Papaver somniferum L.and quickly occurred after Ranunculales diverged from other eudicots,likely a Ranunculales common tetraploidization(RCT).The synonymous nucleotide substitutions at synonymous sites distribution of syntenic blocks across these genomes showed that the evolutionary rate of the P.somniferum genome is faster than that of the C.chinensis genome by approximately 13.7%,possibly due to Papaveraceaes having an additional special tetraploidization event(PST).After Ks correction,the RCT dated to 115—130 million years ago(MYA),which was close to the divergence of Ranunculaceaes and Papaveraceaes approximately115.45—130.51 MYA.Moreover,we identified homologous genes related to polyploidization and speciation and constructed multiple sequence alignments with different reference genomes.Notably,the event-related subgenomes in the basal genomes all showed genomic fractionation bias,suggesting a likely allopolyploid nature of the RCT,PST and T-Alpha and T-Beta events in Tetracentron sinense.In addition,we detected that the sixteen P450 subfamilies were markedly expanded in the genomes of Ranunculales,and most of them were related to the RCT and PST events.We constructed a new platform for Early Eudicot Comparative Genomic Research(http://www.cgrpoee.top/index.html)to store more information.In summary,our findings support the WGD of C.chinensis shared by Ranunculales,which is likely an allotetraploidization event.This present effort offered new insights into the evolution of key polyploidization events and the genes related to secondary metabolites during the diversification of early eudicots.