In this paper, a vector regulating principle of the phase and amplitude control PAC method for three-phase grid-connected inverters is presented.To solve the problem of heavy inrush current and slow dynamic response w...In this paper, a vector regulating principle of the phase and amplitude control PAC method for three-phase grid-connected inverters is presented.To solve the problem of heavy inrush current and slow dynamic response when system starts up, the starting voltage prediction control and the current feed-forward control are proposed and used, which improve the dynamic performance of the system in the PAC.The experimental results carried out on a three-phase grid-connected inverter proved the validity of the proposed method.展开更多
Shop floor control (SFC) is responsible for the coordination and control of the manufacturing physical and information flow within the shop floor in the manufacturing system. Weaknesses of the production activity co...Shop floor control (SFC) is responsible for the coordination and control of the manufacturing physical and information flow within the shop floor in the manufacturing system. Weaknesses of the production activity control (PAC) architecture of the shop floor are addressed by the Maglica's new system architecture. This architecture gives rise to unlimited number of movers and producers thus evolving more complex but decentralized architecture. Beijing Institute of Technology - production activity control (BIT-PAC) architecture introduces an idea of sub-producars and sub-movers thus reducing the complexity of the architecture. All the equipments including sub-producars and sub-movers are considered to be passive in the proposed shop floor information system. The dissemination of information from sub-producers and sub-movers is done manually through a PC. Proposed BIT-PAC SFC architecture facilitates the information flow from shop floor to the other area of the organization. Effective use of interact information services (IIS) and SQL2000 is done along with the ASP.NET technology to implement the application logic. Applicability of the software based on BIT-PAC architecture is checked by running application software on a network PC that supports the dynamic flow of information from sub-producers and sub-movers to the other parts of the organization. Use of software is also shown at the end for BIT training workshop thus supporting the use of SFC architecture for similar kind of environments.展开更多
This paper investigates the ability of correcting the power factor at the point of common coupling(PCC)of the source side using dynamic voltage restorer(DVR).By applying the phase angle control(PAC)method,the DVR comp...This paper investigates the ability of correcting the power factor at the point of common coupling(PCC)of the source side using dynamic voltage restorer(DVR).By applying the phase angle control(PAC)method,the DVR compensating voltage will be injected with a specific phase angle and magnitude in series with the transmission line,which leads to a power factor angle shift of the resultant load voltage.As a result,the source voltage is always in phase with the source current under different load conditions,which means that the power factor correction is achieved at the PCC of the source side.A laboratorial prototype of the DVR is utilized to verify the proposed control algorithm.The experimental results validate that an approximate unity power factor can be maintained at the source side.展开更多
基金supported by the Shanghai Education Committee Scientific Research Subsidization (Grant No.05AZ30)the Specialized Research Fund for the Doctoral Program of Higher Education (Grant No. 20060280018)
文摘In this paper, a vector regulating principle of the phase and amplitude control PAC method for three-phase grid-connected inverters is presented.To solve the problem of heavy inrush current and slow dynamic response when system starts up, the starting voltage prediction control and the current feed-forward control are proposed and used, which improve the dynamic performance of the system in the PAC.The experimental results carried out on a three-phase grid-connected inverter proved the validity of the proposed method.
基金This project is supported by Beijing City Key Discipline Fund, China (No.XK100070424).
文摘Shop floor control (SFC) is responsible for the coordination and control of the manufacturing physical and information flow within the shop floor in the manufacturing system. Weaknesses of the production activity control (PAC) architecture of the shop floor are addressed by the Maglica's new system architecture. This architecture gives rise to unlimited number of movers and producers thus evolving more complex but decentralized architecture. Beijing Institute of Technology - production activity control (BIT-PAC) architecture introduces an idea of sub-producars and sub-movers thus reducing the complexity of the architecture. All the equipments including sub-producars and sub-movers are considered to be passive in the proposed shop floor information system. The dissemination of information from sub-producers and sub-movers is done manually through a PC. Proposed BIT-PAC SFC architecture facilitates the information flow from shop floor to the other area of the organization. Effective use of interact information services (IIS) and SQL2000 is done along with the ASP.NET technology to implement the application logic. Applicability of the software based on BIT-PAC architecture is checked by running application software on a network PC that supports the dynamic flow of information from sub-producers and sub-movers to the other parts of the organization. Use of software is also shown at the end for BIT training workshop thus supporting the use of SFC architecture for similar kind of environments.
基金supported by the Office of Naval Research,United States of America,under CODE 33 D“Naval Energy Resiliency and Sustainability”(No.BBA N000114-18-S-B001).
文摘This paper investigates the ability of correcting the power factor at the point of common coupling(PCC)of the source side using dynamic voltage restorer(DVR).By applying the phase angle control(PAC)method,the DVR compensating voltage will be injected with a specific phase angle and magnitude in series with the transmission line,which leads to a power factor angle shift of the resultant load voltage.As a result,the source voltage is always in phase with the source current under different load conditions,which means that the power factor correction is achieved at the PCC of the source side.A laboratorial prototype of the DVR is utilized to verify the proposed control algorithm.The experimental results validate that an approximate unity power factor can be maintained at the source side.