Introduction: Peanut pastes are food products resulting from artisanal or industrial processing, used in cooking in Africa in general and in Central African Republic in particular. These peanut pastes are often contam...Introduction: Peanut pastes are food products resulting from artisanal or industrial processing, used in cooking in Africa in general and in Central African Republic in particular. These peanut pastes are often contaminated by molds and filamentous fungi involved in the degradation of hygienic and organoleptic or even toxicological quality. This study aims to determine the epidemiological profile of molds contaminating peanut pastes sold on the Central African market. Methodology: This was a cross-sectional study carried out from June to September 2023. Samples of peanut pastes sold on Central African market were taken and analyzed at the National Laboratory of Clinical Biology and Public Health using the conventional microbiology method according to ISO 7954 standards. The data obtained were collected in the ODK 2023.3.1 application and analyzed with the Epi Info 7 software. A multivariate analysis by logistic regression, Ficher’s exact test, and chi<sup>2</sup> at the 5% threshold (p Penicillium sp.;11.25% of Mucor sp.;10.63% of Aspergillus terrei;3.13% of Aspergillus niger;1.25% of Aspergillus medullans;28.13% of Aspergillus flavus;2.50% of Aspergillus fumigatus. Peanut pastes stored beyond three days were more contaminated (94.19%). Conclusion: The results of this study made it possible to highlight strains of mold that impact the hygienic and organoleptic quality of peanut pastes sold at the Central African market. Most of the isolated strains were the Aspergillus flavus species which is recognized by its toxigenic effects. This species is much more incriminated in the contamination of foodstuffs with the production of the toxin which causes underlying pulmonary pathologies in humans.展开更多
Along with slurry concentration and particle density,particle size distribution(PSD)of tailings also exerts a significant influence on the yield stress of cemented paste,a non-Newtonian fluid.In this work,a paste stab...Along with slurry concentration and particle density,particle size distribution(PSD)of tailings also exerts a significant influence on the yield stress of cemented paste,a non-Newtonian fluid.In this work,a paste stability coefficient(PSC)was proposed to characterize paste gradation and better reveal its connection to yield stress.This coefficient was proved beneficial to the construction of a unified rheological model,applicable to different materials in different mines,so as to promote the application of rheology in the pipeline transportation of paste.From the results,yield stress showed an exponential growth with increasing PSC,which reflected the proportion of solid particle concentration to the packing density of granular media in a unit volume of slurry,and could represent the properties of both slurry and granular media.It was found that slurry of low PSC contained extensive pores,generally around 20μm,encouraging free flow of water,constituting a relatively low yield stress.In contrast,slurry of high PSC had a compact and quite stable honeycomb structure,with pore sizes generally<5μm,causing the paste to overcome a higher yield stress to flow.展开更多
In current underground mining, the stability of the exposed backfill face is a basic issue associated with mining design and has been the subject of considerable research in mining safety and efficiency. In this study...In current underground mining, the stability of the exposed backfill face is a basic issue associated with mining design and has been the subject of considerable research in mining safety and efficiency. In this study, an improved analytical solution for evaluating the safety of vertically exposed faces in backfilling was proposed. Based on a differential slice method, the proposed solution emphasizes the arching effect as having the advantages of more rigor and wider scalability. Feasibility of the proposed solution was validated with classic centrifuge results. Good agreement between compared results indicated that the proposed solution skillfully predicts the behavior of the paste centrifuge model. Additionally, calculation of exposed face safety in sequential filling was presented. The proposed solution has practical significance in mine backfill design.展开更多
The effect of gluten on pasting properties of wheat starch was studied to provide a scientific basis for the application of gluten in food production and quality improvement in wheat breeding. The pasting properties o...The effect of gluten on pasting properties of wheat starch was studied to provide a scientific basis for the application of gluten in food production and quality improvement in wheat breeding. The pasting properties of blends were analyzed using PH 1391 wheat starch mixed with five different additions of three kinds of gluten (strong-, medium-, and weak-gluten) and the structures of network were observed with microscope. The significant downtrends of peak viscosity, trough viscosity, final viscosity, area of viscosity, setback, and peak time were observed with the increase in the addition of gluten. In general, the average value of them decreased respectively by 3.6, 4.8, 3.4, 3.8, 4.0, and 1.18% of those corresponding indexes of pure starch for every 2% increase in gluten. The decreasing rate of the indexes mentioned above exceeded more than 2% except peak time, but there were no significant influence of gluten addition on breakdown, pasting temperature and pasting time. The inter layer composed of gluten was not observed when the addition of gluten was 10%, as the compound formed of gluten inlaid in the paste of starch, but obvious inter layer was detected when the addition of gluten was 18%. There was significant or remarkable difference among the effects of three different kinds of gluten on the peak viscosity, trough viscosity, area of viscosity, setback, and peak time, but it had no significant difference among the effects of different glutens on pasting temperature and pasting time. The descending order of the effect of different glutens on peak viscosity, trough viscosity, and area of viscosity was strong-, medium-, and weak-gluten, but the order of them for setback was opposite. Both addition and types of gluten significantly affected peak viscosity, trough viscosity, area of viscosity, setback, and peak time, but there were no significant effects of it on peak time and peak temperature.展开更多
In this study, a pressure cell apparatus is developed to investigate the early age evolution of the strength and deformation behaviour of cemented paste backfill(CPB) when subjected to various loading conditions under...In this study, a pressure cell apparatus is developed to investigate the early age evolution of the strength and deformation behaviour of cemented paste backfill(CPB) when subjected to various loading conditions under different curing scenarios. The different curing scenarios that are simulated include:(1)drained and undrained conditions,(2) different filling rates,(3) different filling sequences, and(4) different curing stresses. The findings show that drainage, curing stress, curing time and filling rate influence the mechanical and deformation behaviours of CPB materials. The coupled effects of consolidation, drainage and suction contribute to the strength development of drained CPB subjected to curing stress. On the other hand, particle rearrangement caused by the applied pressure and suction development due to self-desiccation plays a significant role in the strength gain of undrained CPB cured under stress.Furthermore, curing stress induces slightly faster rate of cement hydration, which can contribute to strength acquisition.展开更多
The effects of activated coal gangue on compressive strength, porosity and pore size distribution of hardened cement pastes were investigated. Activated coal gangue with two different kaolin contents, one higher and o...The effects of activated coal gangue on compressive strength, porosity and pore size distribution of hardened cement pastes were investigated. Activated coal gangue with two different kaolin contents, one higher and one lower, were used to partially replace Portland cement at 0%, 10%, and 30% by weight. The water to binder ratio(w/b) of 0.5 was used for all the blended cement paste mixes. Experimental results indicate that the blended cement of activated coal gangue mortar with higher kaolin mineral content has a higher compressive strength than that with lower kaolin mineral content. The porosity and pore size of blended cement mortar were significantly affected by the replacement of activated coal gangue.展开更多
As one of the most effective enzymatic modification methods of protein, papain hydrolysis is applied widely in food production, accompanying starch pasting frequently in order to improve industrial quality. Effects of...As one of the most effective enzymatic modification methods of protein, papain hydrolysis is applied widely in food production, accompanying starch pasting frequently in order to improve industrial quality. Effects of the papain hydrolysis on flour pasting properties were investigated in five papain/flour concentrations and five time-treatments. The structure of starch and protein networks in slurry was investigated under microscope before and after pasting. Results showed that papain hydrolysis influenced the pasting properties of wheat flour significantly through affecting structural characteristics, amylase activity and exotbermic transition, especially during the early stage of hydrolysis. Peak viscosity, trough, final, integral area, and setback significantly decreased along with the increasing concentration of papain. Both hydrolysis time and concentration of papain had obviously effect on the breakdown. Pasting temperature and pasting time increased significantly with the enhancement of papain concentration. Hydrolysis time exerted minor effect on the pasting temperature and pasting time. The average peak time was slightly prolonged by lower concentration of papain, otherwise slightly shortened by higher concentration.展开更多
Pasting properties are among the most important characteristics of starch, determining its applications in food processing and other industries. Pasting temperature derived from the Rapid Visco-analyser (RVA) (Newp...Pasting properties are among the most important characteristics of starch, determining its applications in food processing and other industries. Pasting temperature derived from the Rapid Visco-analyser (RVA) (Newport Scientific), in most cases, is overestimated by the Thermocline for Windows software program. Here, two methods facilitating accurate measurement of pasting temperature by RVA were described. One is to change parameter setting to 'screen' the true point where the pasting viscosity begins to increase, the other is to manually record the time (T1) when the pasting viscosity begins to increase and calculate the pasting temperature with the formula of (45/3.8)×(T1-1)+50 for rice flour. The latter method gave a manually determined pasting temperature which was significantly correlated with the gelatinization temperature measured by differential scanning calorimetry.展开更多
A novel method was described for the determination of ultra trace amount of scandium based on the cathodic adsorptive voltammetry of the mix-polynuclear complex of scandium-calcium-alizarin red S at a carbon paste ele...A novel method was described for the determination of ultra trace amount of scandium based on the cathodic adsorptive voltammetry of the mix-polynuclear complex of scandium-calcium-alizarin red S at a carbon paste electrode (CPE). The 2nd-order derivative linear scan voltammograms of the adsorbed complex were recorded by model JP-303 polarographic analyzer from 0.0 to -1.0 V (vs. SCE). The experimental conditions of the working procedure were optimized. The results show that the complex can be adsorbed on the surface of the CPE, yielding one peak at -0.61 V, corresponding to the reduction of the alizarin red S in the mix-polynuclear complex at the electrode. The detection limit of Sc^(3+) is 1.0×10^(-10) mol·L^(-1) for 3 min of accumulation time. The procedure was successfully applied to the determination of trace amount of scandium in the sample ores.展开更多
The water absorption and desorption processes of different types of lightweight aggregates were studied.Subsequently,the influences of pre-wetting lightweight aggregates on compressive strength,microhardness,phase com...The water absorption and desorption processes of different types of lightweight aggregates were studied.Subsequently,the influences of pre-wetting lightweight aggregates on compressive strength,microhardness,phase composition,hydration parameters and micromorphology of the cement pastes were investigated.The results showed that the water absorption and desorption capacities of the lightweight aggregates increased with the decrease of the densification degree.With the addition of pre-wetting lightweight aggregates,the compressive strength of the cement pastes would increase.Moreover,the enhancement effect was more obviously with the desorption capacity of pre-wetting lightweight aggregates increasing.Especially,sample S1 with pre-wetting red-mud ceramisites had the highest compressive strength,of which increased to 49.4 MPa after 28 d curing age.The reason is that mainly because the addition of pre-wetting lightweight aggregates can promote the generation of C–S–H gels in the interfacial zone,and the hydration degree of the interfacial zone increases with the water desorption of pre-wetting lightweight aggregates increasing.It is contributed to optimize the microstructure to enhance microhardness of the interfacial zone,resulting in the compressive strength of the cement-based materials improving.Therefore,the pre-wetting lightweight aggregates with high porosity and strength are the potential internal curing agents for high-strength lightweight concretes.展开更多
Using the tomography image, a method to characterize the 3D spatial distributions of increased porosity was proposed, and the increased porosity distributions of cement pastes with different leaching degrees were give...Using the tomography image, a method to characterize the 3D spatial distributions of increased porosity was proposed, and the increased porosity distributions of cement pastes with different leaching degrees were given using the current method. The leaching processes of CH/C-S-H and the contribution of CH/C-S-H leaching to porosity evolution were discussed. The proposed method can be applied to all cement- based materials with any leaching degrees. From the quantitative increased porosity results, we find that the CH leaching finished quickly on the sharp CH leaching front.展开更多
文摘Introduction: Peanut pastes are food products resulting from artisanal or industrial processing, used in cooking in Africa in general and in Central African Republic in particular. These peanut pastes are often contaminated by molds and filamentous fungi involved in the degradation of hygienic and organoleptic or even toxicological quality. This study aims to determine the epidemiological profile of molds contaminating peanut pastes sold on the Central African market. Methodology: This was a cross-sectional study carried out from June to September 2023. Samples of peanut pastes sold on Central African market were taken and analyzed at the National Laboratory of Clinical Biology and Public Health using the conventional microbiology method according to ISO 7954 standards. The data obtained were collected in the ODK 2023.3.1 application and analyzed with the Epi Info 7 software. A multivariate analysis by logistic regression, Ficher’s exact test, and chi<sup>2</sup> at the 5% threshold (p Penicillium sp.;11.25% of Mucor sp.;10.63% of Aspergillus terrei;3.13% of Aspergillus niger;1.25% of Aspergillus medullans;28.13% of Aspergillus flavus;2.50% of Aspergillus fumigatus. Peanut pastes stored beyond three days were more contaminated (94.19%). Conclusion: The results of this study made it possible to highlight strains of mold that impact the hygienic and organoleptic quality of peanut pastes sold at the Central African market. Most of the isolated strains were the Aspergillus flavus species which is recognized by its toxigenic effects. This species is much more incriminated in the contamination of foodstuffs with the production of the toxin which causes underlying pulmonary pathologies in humans.
基金financially supported by China Postdoctoral Science Foundation (No. 2019M663576)the National Natural Science Foundation of China (No. 51774020)+2 种基金the Key Laboratory of Ministry of Education of China for Efficient Mining and Safety of Metal Mines (No. ustbmslab201801)the Program for Innovative Research Team (in Science and Technology) in University of Yunnan Provincethe Research Start-up Fund for Introduced Talent of Kunming University of Science and Technology (No. KKSY201821024)
文摘Along with slurry concentration and particle density,particle size distribution(PSD)of tailings also exerts a significant influence on the yield stress of cemented paste,a non-Newtonian fluid.In this work,a paste stability coefficient(PSC)was proposed to characterize paste gradation and better reveal its connection to yield stress.This coefficient was proved beneficial to the construction of a unified rheological model,applicable to different materials in different mines,so as to promote the application of rheology in the pipeline transportation of paste.From the results,yield stress showed an exponential growth with increasing PSC,which reflected the proportion of solid particle concentration to the packing density of granular media in a unit volume of slurry,and could represent the properties of both slurry and granular media.It was found that slurry of low PSC contained extensive pores,generally around 20μm,encouraging free flow of water,constituting a relatively low yield stress.In contrast,slurry of high PSC had a compact and quite stable honeycomb structure,with pore sizes generally<5μm,causing the paste to overcome a higher yield stress to flow.
基金financially supported by the China Scholarship Council (No. 201506420049)
文摘In current underground mining, the stability of the exposed backfill face is a basic issue associated with mining design and has been the subject of considerable research in mining safety and efficiency. In this study, an improved analytical solution for evaluating the safety of vertically exposed faces in backfilling was proposed. Based on a differential slice method, the proposed solution emphasizes the arching effect as having the advantages of more rigor and wider scalability. Feasibility of the proposed solution was validated with classic centrifuge results. Good agreement between compared results indicated that the proposed solution skillfully predicts the behavior of the paste centrifuge model. Additionally, calculation of exposed face safety in sequential filling was presented. The proposed solution has practical significance in mine backfill design.
基金supported by the National Basic Research Program of China (973Program,2009CB118300)the Improved Variety Project of Shandong Province,China (LN2008-167)the Youth Science and Technology Innovation funded by the Shandong Agricultural University,China (005-23601)
文摘The effect of gluten on pasting properties of wheat starch was studied to provide a scientific basis for the application of gluten in food production and quality improvement in wheat breeding. The pasting properties of blends were analyzed using PH 1391 wheat starch mixed with five different additions of three kinds of gluten (strong-, medium-, and weak-gluten) and the structures of network were observed with microscope. The significant downtrends of peak viscosity, trough viscosity, final viscosity, area of viscosity, setback, and peak time were observed with the increase in the addition of gluten. In general, the average value of them decreased respectively by 3.6, 4.8, 3.4, 3.8, 4.0, and 1.18% of those corresponding indexes of pure starch for every 2% increase in gluten. The decreasing rate of the indexes mentioned above exceeded more than 2% except peak time, but there were no significant influence of gluten addition on breakdown, pasting temperature and pasting time. The inter layer composed of gluten was not observed when the addition of gluten was 10%, as the compound formed of gluten inlaid in the paste of starch, but obvious inter layer was detected when the addition of gluten was 18%. There was significant or remarkable difference among the effects of three different kinds of gluten on the peak viscosity, trough viscosity, area of viscosity, setback, and peak time, but it had no significant difference among the effects of different glutens on pasting temperature and pasting time. The descending order of the effect of different glutens on peak viscosity, trough viscosity, and area of viscosity was strong-, medium-, and weak-gluten, but the order of them for setback was opposite. Both addition and types of gluten significantly affected peak viscosity, trough viscosity, area of viscosity, setback, and peak time, but there were no significant effects of it on peak time and peak temperature.
基金the Natural Sciences and Engineering Research Council of Canada (NSERC)the University of Ottawa
文摘In this study, a pressure cell apparatus is developed to investigate the early age evolution of the strength and deformation behaviour of cemented paste backfill(CPB) when subjected to various loading conditions under different curing scenarios. The different curing scenarios that are simulated include:(1)drained and undrained conditions,(2) different filling rates,(3) different filling sequences, and(4) different curing stresses. The findings show that drainage, curing stress, curing time and filling rate influence the mechanical and deformation behaviours of CPB materials. The coupled effects of consolidation, drainage and suction contribute to the strength development of drained CPB subjected to curing stress. On the other hand, particle rearrangement caused by the applied pressure and suction development due to self-desiccation plays a significant role in the strength gain of undrained CPB cured under stress.Furthermore, curing stress induces slightly faster rate of cement hydration, which can contribute to strength acquisition.
基金the National Basic Research Program of China(No.2001CB610703)the Basic Research of Preparation and Application of High Performance Cement
文摘The effects of activated coal gangue on compressive strength, porosity and pore size distribution of hardened cement pastes were investigated. Activated coal gangue with two different kaolin contents, one higher and one lower, were used to partially replace Portland cement at 0%, 10%, and 30% by weight. The water to binder ratio(w/b) of 0.5 was used for all the blended cement paste mixes. Experimental results indicate that the blended cement of activated coal gangue mortar with higher kaolin mineral content has a higher compressive strength than that with lower kaolin mineral content. The porosity and pore size of blended cement mortar were significantly affected by the replacement of activated coal gangue.
基金supported by the National Natural Science Foundation of China(31171554)the National Basic Research Program of China(2009CB118300)the Improved Variety Project of Shandong Province, China(LN2008-167)
文摘As one of the most effective enzymatic modification methods of protein, papain hydrolysis is applied widely in food production, accompanying starch pasting frequently in order to improve industrial quality. Effects of the papain hydrolysis on flour pasting properties were investigated in five papain/flour concentrations and five time-treatments. The structure of starch and protein networks in slurry was investigated under microscope before and after pasting. Results showed that papain hydrolysis influenced the pasting properties of wheat flour significantly through affecting structural characteristics, amylase activity and exotbermic transition, especially during the early stage of hydrolysis. Peak viscosity, trough, final, integral area, and setback significantly decreased along with the increasing concentration of papain. Both hydrolysis time and concentration of papain had obviously effect on the breakdown. Pasting temperature and pasting time increased significantly with the enhancement of papain concentration. Hydrolysis time exerted minor effect on the pasting temperature and pasting time. The average peak time was slightly prolonged by lower concentration of papain, otherwise slightly shortened by higher concentration.
基金This research was financially supported in part by the National High Technology Development Project of China(Grant No.2006AA10Z193)the National Natural Science Foundation of China(Grant No.30300227)the Science and Technology Department of Zhejiang Province(Grant No.2007C32014).
文摘Pasting properties are among the most important characteristics of starch, determining its applications in food processing and other industries. Pasting temperature derived from the Rapid Visco-analyser (RVA) (Newport Scientific), in most cases, is overestimated by the Thermocline for Windows software program. Here, two methods facilitating accurate measurement of pasting temperature by RVA were described. One is to change parameter setting to 'screen' the true point where the pasting viscosity begins to increase, the other is to manually record the time (T1) when the pasting viscosity begins to increase and calculate the pasting temperature with the formula of (45/3.8)×(T1-1)+50 for rice flour. The latter method gave a manually determined pasting temperature which was significantly correlated with the gelatinization temperature measured by differential scanning calorimetry.
文摘A novel method was described for the determination of ultra trace amount of scandium based on the cathodic adsorptive voltammetry of the mix-polynuclear complex of scandium-calcium-alizarin red S at a carbon paste electrode (CPE). The 2nd-order derivative linear scan voltammograms of the adsorbed complex were recorded by model JP-303 polarographic analyzer from 0.0 to -1.0 V (vs. SCE). The experimental conditions of the working procedure were optimized. The results show that the complex can be adsorbed on the surface of the CPE, yielding one peak at -0.61 V, corresponding to the reduction of the alizarin red S in the mix-polynuclear complex at the electrode. The detection limit of Sc^(3+) is 1.0×10^(-10) mol·L^(-1) for 3 min of accumulation time. The procedure was successfully applied to the determination of trace amount of scandium in the sample ores.
基金Funded by National Natural Science Foundation of China(Nos.51878003 and 51778513)Major Special Science and Technology Project of Hubei Province(No.2018AAA001)the National Basic Research Program of China(973 Program)(No.2015CB655101).
文摘The water absorption and desorption processes of different types of lightweight aggregates were studied.Subsequently,the influences of pre-wetting lightweight aggregates on compressive strength,microhardness,phase composition,hydration parameters and micromorphology of the cement pastes were investigated.The results showed that the water absorption and desorption capacities of the lightweight aggregates increased with the decrease of the densification degree.With the addition of pre-wetting lightweight aggregates,the compressive strength of the cement pastes would increase.Moreover,the enhancement effect was more obviously with the desorption capacity of pre-wetting lightweight aggregates increasing.Especially,sample S1 with pre-wetting red-mud ceramisites had the highest compressive strength,of which increased to 49.4 MPa after 28 d curing age.The reason is that mainly because the addition of pre-wetting lightweight aggregates can promote the generation of C–S–H gels in the interfacial zone,and the hydration degree of the interfacial zone increases with the water desorption of pre-wetting lightweight aggregates increasing.It is contributed to optimize the microstructure to enhance microhardness of the interfacial zone,resulting in the compressive strength of the cement-based materials improving.Therefore,the pre-wetting lightweight aggregates with high porosity and strength are the potential internal curing agents for high-strength lightweight concretes.
基金Funded by the National Basic Research Program of China(No.2009CB623203)the National Natural Science Foundation of China(No.51008072)
文摘Using the tomography image, a method to characterize the 3D spatial distributions of increased porosity was proposed, and the increased porosity distributions of cement pastes with different leaching degrees were given using the current method. The leaching processes of CH/C-S-H and the contribution of CH/C-S-H leaching to porosity evolution were discussed. The proposed method can be applied to all cement- based materials with any leaching degrees. From the quantitative increased porosity results, we find that the CH leaching finished quickly on the sharp CH leaching front.