随着可再生能源接入电网比例的逐步增大,热力发电厂需要应对更加频繁、更大范围的负荷变化,给电厂的高阶大惯性过热汽温过程的控制带来严峻的挑战。为此,文中针对一类高阶大惯性过热汽温过程,提出一种基于相位补偿的自抗扰控制(phase co...随着可再生能源接入电网比例的逐步增大,热力发电厂需要应对更加频繁、更大范围的负荷变化,给电厂的高阶大惯性过热汽温过程的控制带来严峻的挑战。为此,文中针对一类高阶大惯性过热汽温过程,提出一种基于相位补偿的自抗扰控制(phase compensation based active disturbance rejection control,PC-ADRC)方法。首先,阐述过热汽温系统的工作原理和控制难点。然后,采用低频近似法详细推导相位补偿(phase compensation,PC)网络模型,提出采用PC网络对模型动态特性进行补偿,得到等效降阶模型的简化思路。为便于工程应用,给出PC-ADRC系统的简单实现方法和等效模型分析。最后,对PC-ADRC系统的稳定性和鲁棒性进行研究。理论分析和仿真结果表明,所提出的PC-ADRC系统能有效提升高阶过程控制系统的鲁棒性和快速响应能力。展开更多
The state of Tb3+ is investigated in liposome. When the concentration of PC is below CMC (critical micell concentration), most of Tb3+ is associated with PC, the binding constant is about 3.35×103 L/mol. When the...The state of Tb3+ is investigated in liposome. When the concentration of PC is below CMC (critical micell concentration), most of Tb3+ is associated with PC, the binding constant is about 3.35×103 L/mol. When the concentration of PC is beyond CMC, most of Tb3+ is dimerized, the dimerization constant is about 3.92×104L/mol. In PC?CH?H2O system, the binding constant of Tb3+?CH complex 2.93×104L/mol is obtained.展开更多
Let p be a prime. For any finite p-group G, the deep transfers T H,G ' : H / H ' → G ' / G " from the maximal subgroups H of index (G:H) = p in G to the derived subgroup G ' are introduced as an ...Let p be a prime. For any finite p-group G, the deep transfers T H,G ' : H / H ' → G ' / G " from the maximal subgroups H of index (G:H) = p in G to the derived subgroup G ' are introduced as an innovative tool for identifying G uniquely by means of the family of kernels ùd(G) =(ker(T H,G ')) (G: H) = p. For all finite 3-groups G of coclass cc(G) = 1, the family ùd(G) is determined explicitly. The results are applied to the Galois groups G =Gal(F3 (∞)/ F) of the Hilbert 3-class towers of all real quadratic fields F = Q(√d) with fundamental discriminants d > 1, 3-class group Cl3(F) □ C3 × C3, and total 3-principalization in each of their four unramified cyclic cubic extensions E/F. A systematic statistical evaluation is given for the complete range 1 d 7, and a few exceptional cases are pointed out for 1 d 8.展开更多
文摘随着可再生能源接入电网比例的逐步增大,热力发电厂需要应对更加频繁、更大范围的负荷变化,给电厂的高阶大惯性过热汽温过程的控制带来严峻的挑战。为此,文中针对一类高阶大惯性过热汽温过程,提出一种基于相位补偿的自抗扰控制(phase compensation based active disturbance rejection control,PC-ADRC)方法。首先,阐述过热汽温系统的工作原理和控制难点。然后,采用低频近似法详细推导相位补偿(phase compensation,PC)网络模型,提出采用PC网络对模型动态特性进行补偿,得到等效降阶模型的简化思路。为便于工程应用,给出PC-ADRC系统的简单实现方法和等效模型分析。最后,对PC-ADRC系统的稳定性和鲁棒性进行研究。理论分析和仿真结果表明,所提出的PC-ADRC系统能有效提升高阶过程控制系统的鲁棒性和快速响应能力。
文摘The state of Tb3+ is investigated in liposome. When the concentration of PC is below CMC (critical micell concentration), most of Tb3+ is associated with PC, the binding constant is about 3.35×103 L/mol. When the concentration of PC is beyond CMC, most of Tb3+ is dimerized, the dimerization constant is about 3.92×104L/mol. In PC?CH?H2O system, the binding constant of Tb3+?CH complex 2.93×104L/mol is obtained.
文摘Let p be a prime. For any finite p-group G, the deep transfers T H,G ' : H / H ' → G ' / G " from the maximal subgroups H of index (G:H) = p in G to the derived subgroup G ' are introduced as an innovative tool for identifying G uniquely by means of the family of kernels ùd(G) =(ker(T H,G ')) (G: H) = p. For all finite 3-groups G of coclass cc(G) = 1, the family ùd(G) is determined explicitly. The results are applied to the Galois groups G =Gal(F3 (∞)/ F) of the Hilbert 3-class towers of all real quadratic fields F = Q(√d) with fundamental discriminants d > 1, 3-class group Cl3(F) □ C3 × C3, and total 3-principalization in each of their four unramified cyclic cubic extensions E/F. A systematic statistical evaluation is given for the complete range 1 d 7, and a few exceptional cases are pointed out for 1 d 8.