Aim The enhanced effect of Bushen (Kidney-tonifying) decoction (BS) oncultured PC12 cell proliferation and its antagonistic action on neurotoxicity induced by glutamatewere investigated by serum pharmacological method...Aim The enhanced effect of Bushen (Kidney-tonifying) decoction (BS) oncultured PC12 cell proliferation and its antagonistic action on neurotoxicity induced by glutamatewere investigated by serum pharmacological method of the Chinese material medica (CMM) in vitro.Methods The effect of BS on cultured PC12 cell activity and its antagonistic action on neurotoxicityinduced by glutamate was observed by MTT method. Flow cytometry and fluorescence microscopetechniques were employed to observe the antagonistic effect of BS on early period apoptosis of PC12cells induced by glutamate. Results The serum with BS was able to enhance activity of PC12 cells andexert antagonistic effect on glutamate-induced neurotoxicity. Meanwhile, these beneficial effectsproduced by BS were found to be the strongest in 20% concentration of in serum BS. Moreover, it caninhibit apoptosis of PC12 cells induced by glutamate , which occurs in the early period. ConclusionBS may exert a potential neuroprotective effect.展开更多
Alpinia oxyphylla,a traditional herb,is widely used for its neuroprotective,antioxidant and memory-improving effects.However,the neuroprotective mechanisms of action of its active ingredients are unclear.In this study...Alpinia oxyphylla,a traditional herb,is widely used for its neuroprotective,antioxidant and memory-improving effects.However,the neuroprotective mechanisms of action of its active ingredients are unclear.In this study,we investigated the neuroprotective effects of various organic extracts of Alpinia oxyphylla on PC12 cells exposed to hydrogen peroxide-induced oxidative injury in vitro.Alpinia oxyphylla was extracted three times with 95%ethanol(representing extracts 1–3).The third 95%ethanol extract was dried and resuspended in water,and then extracted successively with petroleum ether,ethyl acetate and n-butanol(representing extracts 4–6).The cell counting kit-8 assay and microscopy were used to evaluate cell viability and observe the morphology of PC12 cells.The protective effect of the three ethanol extracts(at tested concentrations of 50,100 and 200μg/mL)against cytotoxicity to PC12 cells increased in a concentration-dependent manner.The ethyl acetate,petroleum ether and n-butanol extracts(each tested at 100,150 and 200μg/mL)had neuroprotective effects as well.The optimum effective concentration ranged from 50–200μg/mL,and the protective effect of the ethyl acetate extract was comparatively robust.These results demonstrate that organic extracts of Alpinia oxyphylla protect PC12 cells against apoptosis induced by hydrogen peroxide.Our findings should help identify the bioactive neuroprotective components in Alpinia oxyphylla.展开更多
The major ingredients of grassleaf sweetflag rhizome are β-asarone and eugenol, which can cross the blood-brain barrier and protect neurons. This study aimed to observe the neuroprotective effects and mechanisms of ...The major ingredients of grassleaf sweetflag rhizome are β-asarone and eugenol, which can cross the blood-brain barrier and protect neurons. This study aimed to observe the neuroprotective effects and mechanisms of β-asarone and eugenol, components of the Chinese herb grassleaf sweetflag rhizome, on PC12 cells. First, PC12 cells were cultured with different concentrations(between 1 × 10–10 M and 1 × 10–5 M) of β-asarone and eugenol. Survival rates of PC12 cells were not significantly affected. Second, PC12 cells incubated with amyloid-beta42, which reduced cell survival, were cultured under the same conditions(1 × 10–6 M β-asarone and eugenol). The survival rates of PC12 cells significantly increased, while expression levels of the m RNAs for the pro-apoptotic protein Bax decreased, and those for the anti-apoptotic protein Bcl m RNA increased. In addition, the combination of β-asarone with eugenol achieved better results than either component alone. Our experimental findings indicate that both β-asarone and eugenol protect PC12 cells through inhibiting apoptosis, and that the combination of the two is better than either alone.展开更多
To investigate the effects of hypoxia, soman and their combined ones on PC12 cells. Methods: After the PC12 cells were exposed to an atmosphere containing different concentrations of oxygen and cultured in a medium co...To investigate the effects of hypoxia, soman and their combined ones on PC12 cells. Methods: After the PC12 cells were exposed to an atmosphere containing different concentrations of oxygen and cultured in a medium containing different concentrations of soman, the amount of lactic dehydrogenase (LDH) released by the cells and their survival rate were determined to observe the dose-dependent and time-dependent cytotoxic effects. Student’s t test and two-way ANOVA were employed to determine the statistical differences and interaction between hypoxia and soman exposure. Results: 1) Both hypoxia and soman exposures exerted dose-dependent cytotoxic effects on PC12 cells and the interaction between the two injurious factors was significant; 2)The combined effects of the two factors were equal to the sum of those exerted by each one separately; and the combined application of the two factors resulted in a more severe cytotoxicity than that caused by either agent used singly; 3) The amount of LDH released from PC12 cells could serve as a more sensitive indicator of cytotoxicity than the survival rate of the cells. Conclusion: This study demonstrates the cytotoxic effects of the combined exposure to hypoxia and soman acted in a summative manner, which suggests that the two factors might induce intracellular release of LDH in PC12 cells through different mechanisms.展开更多
Ischemic cerebrovascular disease is a global health problem. According to the World Health Organization, ischemic stroke is actually the most common cause of death in the world. Ginkgo biloba extract (GbE) is a tradit...Ischemic cerebrovascular disease is a global health problem. According to the World Health Organization, ischemic stroke is actually the most common cause of death in the world. Ginkgo biloba extract (GbE) is a traditional Chinese medicine for angina pectoris. Ginkgo biloba plays a role in expanding blood vessels, increasing coronary and cerebral blood flow, preventing platelet aggregation, inhibiting thrombosis, and improving the microcirculation. In the present study, we investigated the mechanisms involved in the neuroprotective effects of GbE in a model of hypoxic-ischemic brain disease. We used NGF(100 ng/ml for 6 days)and OGD(5% CO2and 95% N2, 1 mmol/l NaS2O4insugar-free DMEM for 16 h) to stimulate PC12 cells and convert them into neurons in order to establish an ischemia model. The results showed that PC12 cells transformed into cells that looked like neurons and that MAP2 was up-regulated in NGF-treated PC12 cells. Cell apoptosis was found to be up-regulated after NGF stimulation and OGD. The apoptosis rate after 16 hours of OGD was 19.44%. GbE (50ng/ml) reduces apoptosis rate to 11.35%. These results may help to show that NGF treatment can be combined with OGD to establish anin vitromodel of acute ischemic brain damage. In the present study, we find that GbE effectively increases the survival rate of PC12 cells and relieves OGD damage. These results suggest that GbE has the neuroprotective effects of ischemic brain damage.展开更多
BACKGROUND: Insulin receptor (IR) expression in the substantia nigra of patients with Parkinson disease (PD) is not only significantly lower than that in the substantia nigra of normal persons of the same age, bu...BACKGROUND: Insulin receptor (IR) expression in the substantia nigra of patients with Parkinson disease (PD) is not only significantly lower than that in the substantia nigra of normal persons of the same age, but also significantly lower than that in other regions in brain of himself/herself. It suggests that the abnormal effect of insulin receptor-mediated insulin, as a neurotrophic factor, is very possibly related to the loss of dopaminergic neurons in the substantia nigra and striatum in patients with Parkinson disease. OBJECTIVE : TO observe the interventional effect of insulin on 1-methyl-4-phenylpyridinium ion (MPP^+)-induced apoptosis of PC12. DESIGN: Controlled observation SETTINGS: Department of Neurology, Beijing China-Japan Friendship Hospital; Department of Neurology Huashan Hospital Affiliated to Fudan University. MATERIALS: PC12 cells were provided by the Cell Bank, Shanghai Institute of Cell Biology, Chinese Academy of Science. MPP^+, MTT, HOECHST 33258 (Invitrogen Life Technologies), reverse transcription-polymerase chain reaction (RT-PCR) reagent (Takara Shuzo Co., Ltd.), flow cytometer (Bacton Dickionson, San Jose, CA), enzyme labelling instrument (Bio-Tek, Winooski, VT) and PCR circulation instrument (Takara Shuzo Co., Ltd) were used in this study. METHODS : This study was carried out in the Department of Neurology, Huashan Hospital Affiliated to Fudan University during June 2003 to August 2004. (1) Cell culture and experimental grouping: PC12 cells were cultured according to the method from Peng et al, then were randomized into 3 groups; blank control group, MPP^+ group and insulin group. (2) Detection of relative survival rate of cells: The relative survival rate of cells at different MPP^+ final concentrations (0, 50, 100, 200, 300, 1 000 μmol/L) and at different culture time (0, 4, 8, 12, 18, 24 hours) in the 300 Fmol/L MPP^+ group and different concentrations of insulin (0, 15, 50, 100 nmol/L) in the insulin group was detected with MTT method according to the method from Hansen et al. (3) Observation of cell apoptosis: After stained by HOECHST 33258, the apoptotic cells were observed under the fluorescence miscroscope with the method from Chen et al. (4) Dection of apoptotic rate of cells: Apoptotic rate of cells was detected with flow cytometry according to the method from Zhang et al. (5) The expression of tyrosine hydroxylase (TH) mRNA in PC12 cells was detected with RT-PCR methods according to the modified method from Peng et al. MAIN OUTCOME MEASURES : Comparison of relative survival rate, apoptosis rate, the expression of IR mRNA and TH mRNA and cell apoptosis. RESULTS: (1) After 12-hour incubation of 100, 200, 300 and 1 000 μmol/L MPP^+, the relative survival rate of PC12 cells was (72.88±2.91)%, (60.64±0.81)%, (54.56±0.76)% and (16.89±2.83)%, respectively, which was significantly lower than that of blank control group (100%, P 〈 0.05); After 12, 18 and 24-hour incubation, the relative survival rate of PC12 cells was (54.56±0.76)%, (42.43±0.16)% and (23.56±0.17)% respectively, which was significantly lower than that of blank control group (100%, P〈 0.05); When 15, 50 and 100 nmol/L insulin was pre-added to cells, the relative survival rate was (70.10±0.16)%, (78.01 ±2.43)% and (83.55±1.43)%, respectively, which was significantly higher than MPP^+ alone [(54.56±0.76)%, P 〈 0.05]. (2) Appototic bodies were rarely seen in the blank control group, but densely gathered in the MPP^+ group and were significantly decreased in the insulin group. (3) Apoptosis rate of PC12 cells in the MPP^+ group was significantly higher than that in the blank control group [(36.56±0.89)% vs. (2.34±0.23)%, P〈 0.05], and that in the 15, 50, 100 nmol/L insulin group [(30.01±0.04)%, (24.23±0.37)%, (20.01 ±1.01)%, respectivelyl was significantly lower than that in MPP^+ group (P 〈 0.05). (4) The TH mRNA expression in PC12 cells in MPP^+ group was significantly lower than that in blank control group; The expression of TH mRNA in insulin group was gradually increased in an insulin dose-dependent manner. There were no significant changes in the expression of IR mRNA under different experimental conditions. CONCLUSION: Insulin can resist MPP^+-induced apoptosis of PC12 cells, lessen the damage of PC12 cells, but does not change the gene expression of target cell insulin receptor.展开更多
BACKGROUND: Phycocyanin can relieve decrease of mitochondrial membrane potential through reducing production of active oxygen so as to protect neurons after hypoxia/reoxygenation. OBJECTIVE: To observe the effect of...BACKGROUND: Phycocyanin can relieve decrease of mitochondrial membrane potential through reducing production of active oxygen so as to protect neurons after hypoxia/reoxygenation. OBJECTIVE: To observe the effect of phycocyanin on activity of PC12 cells and mitochondrial membrane potential after hypoxia/reoxygenation. DESIGN: Randomized controlled study SETTING : Cerebrovascular Disease Institute of Affiliated Hospital, Medical College of Qingdao University MATERIALS: The experiment was carried out at the Key Laboratory of Prevention and Cure for cerebropathia in Shandong Province from October to December 2005. PC12 cells, rat chromaffin tumor cells, were provided by Storage Center of Wuhan University; phycocyanin was provided by Ocean Institute of Academia Sinica; Thiazoyl blue tetrazolium bromide (MTT) and rhodamine 123 were purchased from Sigma Company, USA; RPMI-1640 medium, fetal bovine serum and equine serum were purchased from Gibco Company, USA. METHODS: ① Culture of PC12 cells: PC12 cells were put into RPMI-1640 medium which contained 100 g/L heat inactivation equine serum and 0.05 volume fraction of fetal bovine serum and incubated in CO2 incubator at 37℃. Number of cells was regulated to 4 × 10^5 L 1, and cells were inoculated at 96-well culture plate. The final volume was 100μL. ② Model establishing and grouping: Cultured PC12 cells were randomly divided into three groups: phycocyanin group, model control group and non-hypoxia group. At 24 hours before hypoxia, culture solution in phycocyanin group was added with phycocyanin so as to make sure the final concentration of 3 g/L , but cells in model control group did not add with phycocyanin. Cells in non-hypoxia group were also randomly divided into adding phycocyanin group (the final concentration of 3 g/L) and non-adding phycocyanin group. Cells in model control group and phycocyanin group were cultured with hypoxia for 1 hour and reoxygenation for 1, 2 and 3 hours; meanwhile, cells in non-hypoxia group were cultured with oxygen and were measured at 1 hour after hypoxia/reoxygenation. ③ Detecting items: At 1, 2 and 3 hours after reoxygenation, absorbance (A value) of PC12 cells was measured with MTT technique so as to observe activity and quantity of cells. Fluorescence intensity of PC12 cells marked by rhodamine 123 was measured with confocal microscope in order to observe changes of mitochondrial membrane potential. MAEN OUTCOME MEASURES: Comparisons between quantity and activity of PC12 cells and mitochondria membrane potential at 1, 2 and 3 hours after reoxygenation. RESULTS: ① Effect of phycocyanin on quantity and activity of PC12 cells: A value was 0.924±0.027 in adding phycocyanin group and 0.924±0.033 in non-adding phycocyanin group. A value was lower in model control group and phycocyanin group than that in non-hypoxia group at 1, 2 and 3 hours after reoxygenation (0.817±0.053, 0.838±0.037, 0.875±0.029; 0.842±0.029, 0.872±0.025, 0.906±0.023, P 〈 0.05). A value was higher in phycocyanin group than that in model control group at 1, 2 and 3 after culture (P 〈 0.05). With culture time being longer, A value was increased gradually in phycocyanin group and model control group after reoxygenation (P 〈 0.05). ~ Effect of phycocyanin on mitochondrial membrane potential of PC12 cells: Fluorescence intensity was 2.967±0.253 in adding phycocyanin group and 2.962±0.294 in non-adding phycocyanin group. Fluorescence intensity was lower in model control group and phycocyanin group than that in non-hypoxia group at 1, 2 and 3 hours after hypoxia/reoxygenation (1.899±0.397, 2.119±0.414, 2.287±0.402; 2.191±0.377, 2.264±0.359, 2.436±0.471, P 〈 0.05); but it was higher in phycocyanin group than that in model control group at 1, 2 and 3 after reoxygenation (P 〈 0.05). With culture time being longer, fluorescence intensity was increased gradually in phycocyanin group and model control group after reoxygenation (P 〈 0.05). CONCLUSION: Phycocyanin and reoxygenation can protect PC12 cells after hypoxia injury through increasing mitochondrial membrane potential and cellular activity, and the effect is improved gradually with prolonging time of reoxygenation.展开更多
In our previous study, defatted walnut meal hydrolysate(DWMH) could attenuate D-galactose-induced acute memory deficits in vivo, and six potent active peptides including WSREEQ, WSREEQE, WSREEQEREE, ADIYTE, ADIYTEEAG ...In our previous study, defatted walnut meal hydrolysate(DWMH) could attenuate D-galactose-induced acute memory deficits in vivo, and six potent active peptides including WSREEQ, WSREEQE, WSREEQEREE, ADIYTE, ADIYTEEAG and ADIYTEEAGR were identified. The aim of this study was to investigate the possible mechanism underlying their neuroprotective effects on glutamate-induced apoptosis in PC12 cells and their digestive stability. Results showed that all these peptides could attenuate the reduction of cell viability caused by glutamate in PC12 cells, especially WSREEQEREE and ADIYTEEAGR. The addition of Arg residue in WSREEQEREE and ADIYTEEAGR might be the potential reason for their stronger protective effects. Additionally, these two peptides possibly protected PC12 cells against glutamate-induced apoptosis via activating intracellular antioxidant defence(superoxide dismutase(SOD) and glutathione peroxidase(GSH-Px)) through Kelch-like ECH-associated protein 1(Keap1) inhibition, inhibiting ROS production, Ca;influx and mitochondrial membrane potential(MMP) collapse as well as regulating the expression of apoptosis-related proteins(Bax and Bcl-2). This might be due to the presence of Trp, Tyr and Arg in these two peptides. However, encapsulation of WSREEQEREE and ADIYTEEAGR should be considered based on their digestive sensibility during in vitro gastrointestinal digestion.展开更多
BACKGROUND: Rotenone-induced neurotoxicity in PC 12 cells has been widely used to study the pathogenesis of Parkinson's disease. However, the precise mechanisms underlying rotenone-induced dopaminergic neuronal dege...BACKGROUND: Rotenone-induced neurotoxicity in PC 12 cells has been widely used to study the pathogenesis of Parkinson's disease. However, the precise mechanisms underlying rotenone-induced dopaminergic neuronal degeneration in Parkinson's disease remains unclear. OBJECTIVE: To establish rotenone-induced neurotoxicity in PC 12 cells, and to investigate the possible action pathways to rotenone-induced neural cell injury at the protein level. DESIGN, TIME AND SETTING: A controlled proteomics study was performed at the Department of Neurology, First Hospital, Jilin University between March 2006 and March 2007. MATERIALS: PC 12 cells were obtained from Shanghai Cell Bank of Chinese Academy of Sciences, China. Rotenone was provided by Sigma, USA. METHODS: PC 12 cells in logarithmic growth phase were treated under experimental and control conditions, respectively. A total of 0.5 μmol/L rotenone, or the same amount of Dulbecco's modified eagle's medium (DMEM), was added in the experimental and control conditions, respectively. MAIN OUTCOME MEASURES: Following 72 hours of rotenone treatment, cellular survival rate was determined by methyl thiazolyl tetrazolium assay, and apoptotic changes were detected by Hoechst 33342 staining. Total cellular protein was extracted to acquire differential protein expression data utilizing two-dimensional differential in-gel electrophoresis. To identify differential protein spots, matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF-MS) was used. RESULTS: In the MTT assay, the experimental condition induced significantly less cell survival compared to the control condition (P 〈 0.01). Hoechst 33342 staining revealed a larger number of apoptotic cells under the experimental condition compared to the control condition (P 〈 0.01), as determined by the presence of nuclear condensation, pyknosis, and nuclear fragmentation. Two-dimensional electrophoresis results showed that the differential expression of protein spots 1069 and 1538 was increased by 144% and 124%, respectively, while that of protein spot 1094 was decreased by 123% in the experimental condition compared to the control condition (P 〈 0.01). By MALDI-TOF-MS analysis and database retrieval, γ-enolase, triosephosphate isomerase 1, and eukaryotic translation initiation factor 4A were confirmed to be involved in rotenone-induced neural cell injury. CONCLUSION: γ-enolase, triosephosphate isomerase 1, and eukaryotic translation initiation factor 4A might participate in rotenone-induced neurotoxicity in PC 12 cells.展开更多
Antidepressants with novel targets and without side effects are in great demand. Ferulic acid (FA) is a ubiquitous phenolic acid of low toxicity, and sodium ferulate (SF) is its sodium salt. Our previous studies have ...Antidepressants with novel targets and without side effects are in great demand. Ferulic acid (FA) is a ubiquitous phenolic acid of low toxicity, and sodium ferulate (SF) is its sodium salt. Our previous studies have revealed that FA and SF show significant protective effect on excitotoxicity, we now test its potential neuroprotective and antidepressant-like effects. MTT assay and morphological analysis by fluorescence microscopy were adopted to measure the neuroprotective effects of SF;forced-swimming, tail-suspension, and chronic mild stress (CMS) tests were performed to assess its antidepressant-like activity. The results showed that SF had protection against H2O2-induced oxidative damage and dexamethasone (DXM)-induced neurotoxicity pheochromocytoma (PC12) cells. Acute administration of SF markedly decreased the duration of immobility during forced-swimming in rats and mice and tail-supension tests in mice. However, SF has no any effects on reserpine-induced hypothermia, 5-hydroxytryptophan-induced head-twitch response, and potentiation of noradrenaline toxicity in mice. Chronic administration of SF reversed the effects of CMS on consumption of food and sucrose solution, weight gain, and histopathology of hippocampus by light microscopy, and potently shortened the immobility time during forced-swimming test following CMS in rats. This study provides evidence that SF possesses obviously antidepressant-like activity, and the antidepressant-like effect may result from its neuroprotective effects.展开更多
The present study was designed to investigate whether a combination of four effective components derived from Sheng-mai san(SMXZF; ginsenoside Rb1: ginsenoside Rg1: DT^(–1)3: Schizandrol A as 6 : 9 : 4 : 5) could att...The present study was designed to investigate whether a combination of four effective components derived from Sheng-mai san(SMXZF; ginsenoside Rb1: ginsenoside Rg1: DT^(–1)3: Schizandrol A as 6 : 9 : 4 : 5) could attenuate hydrogen peroxide(H_2O_2)-induced injury in PC12 cells, focusing on the Akt and MAPK pathways. The PC12 cells were exposed to H_2O_2(400 mmol·L^(–1)) for 1 h in the presence or absence of SMXZF pre-treatment for 24 h. Cell viability was measured by MTT assay. The efflux of lactate dehydrogenase(LDH), the intracellular content of malondialdehyde(MDA), the activities of superoxide dismutase(SOD), and caspase-3 were also determined. Cell apoptosis was measured by Hoechst 33342 staining and Annexin V-FITC/PI staining method. The expression of Bcl-2, Bax, cleaved caspase-3, Akt, and MAPKs were detected by Western blotting analyses. SMXZF pretreatment significantly increased the cell viability and SOD activity and improved the cell morphological changes, while reduced the levels of LDH and MDA at the concentrations of 0.1, 1 and 10 μg·m L^(–1). SMXZF also inhibited H_2O_2-induced apoptosis in PC12 cells. Moreover, SMXZF reduced the activity of caspase-3, up-regulated the protein ratio of Bcl-2 and Bax and inhibited the expression of cleaved caspase-3, p-Akt, p-p38, p-JNK and p-ERK1/2 in H_2O_2-induced PC12 cells. Co-incubation of Akt inhibitor or p38 inhibitor partly attenuated the protection of SMXZF against H_2O_2-injured PC12 cells. In conclusion, our findings suggested that SMXZF attenuated H_2O_2-induced injury in PC12 cells by inhibiting Akt and MAPKs signaling pathways, which might shed insights on its neuroprotective mechanism.展开更多
Ferulic acid (FA) is a ubiquitous phenolic acid of low toxicity, and sodium ferulate (SF) is its sodium salt. Our previous studies have revealed that FA shows neuroprotective effect and significant antidepressant- lik...Ferulic acid (FA) is a ubiquitous phenolic acid of low toxicity, and sodium ferulate (SF) is its sodium salt. Our previous studies have revealed that FA shows neuroprotective effect and significant antidepressant- like effect. The aim of this study was to investigate its potential neurogenesis-enhancing effect and its role in repair following stress-induced neuronal damage. MTT assay was performed to measure the effect of SF on the growth of rat pheochromocytoma (PC12) cells;morphological and immunocytochemical meth- ods were used for assessing its differentiation-induc- ing action. Chronic mild stress (CMS) tests were per- formed to establish rat model of depression. The histopathology of animal brains was studied to ana- lyze CMS-induced morphological changes and the effect of SF on the repair of CMS-induced brain in- jury. The expressions of nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) and the proliferation of neural stem cell/neural progenitor cells were assessed in the hippocampi of chronic mild stress (CMS)-induced depression-like model rats by immunohistochemistry and bromodeoxyuridine (BrdU)- incorporation assays, respectively. Our in vitro tests showed that SF promoted the proliferation of PC12 cells in the concentration range of 5 - 320 μM, and induced PC12 cells to differentiate to more mature cells with the morphological characteristics and mo- lecular marker of neuronal-like cells. In vivo tests showed that SF up-regulated the expressions of NGF and BDNF, and induced the proliferation of neural stem cell/neural progenitor cells in the hippocampi of CMS-induced depression-like model rats. This study provides evidences that SF shows neurogenesis-en- hancing effect, and its antidepressant-like effect of SF may be related directly and closely to its above-men- tioned effect.展开更多
Droplet-based microfluidic technology can be utilized as a microreactor to prepare novel functional monodisperse microcapsules.In this study,a droplet-based microfluidic chip with surface modification,which allowed th...Droplet-based microfluidic technology can be utilized as a microreactor to prepare novel functional monodisperse microcapsules.In this study,a droplet-based microfluidic chip with surface modification,which allowed the one-step preparation of double emulsion microcapsules.An O/W/O double emulsion using polyethylene(glycol)diacrylate(PEGDA)solution as the intermediate water phase was prepared by regulating the hydrophilicity and hydrophobicity of the chip surface,with PEGDA microcapsules prepared using UV polymerization.And then anti-tumor drug paclitaxel and neurotoxin 6-OHDA were encapsulated in microcapsules for drug and toxicology evaluation,respectively.Compared to controls,drug-loaded mi-crocapsules caused a significant increase in the death rate of PC12 cells.This indicates that the obtained drug-loaded microcapsules could be used in drug evaluation and potentially in drug screening and deliv-ery.展开更多
基金National Natural Science Foundation of Shanxi Province(No:19991091) and HiTech Resereh and Development Program of China (No:2004AA2Z3815)
文摘Aim The enhanced effect of Bushen (Kidney-tonifying) decoction (BS) oncultured PC12 cell proliferation and its antagonistic action on neurotoxicity induced by glutamatewere investigated by serum pharmacological method of the Chinese material medica (CMM) in vitro.Methods The effect of BS on cultured PC12 cell activity and its antagonistic action on neurotoxicityinduced by glutamate was observed by MTT method. Flow cytometry and fluorescence microscopetechniques were employed to observe the antagonistic effect of BS on early period apoptosis of PC12cells induced by glutamate. Results The serum with BS was able to enhance activity of PC12 cells andexert antagonistic effect on glutamate-induced neurotoxicity. Meanwhile, these beneficial effectsproduced by BS were found to be the strongest in 20% concentration of in serum BS. Moreover, it caninhibit apoptosis of PC12 cells induced by glutamate , which occurs in the early period. ConclusionBS may exert a potential neuroprotective effect.
基金financially supported by the National Natural Science Foundation of China,No.81574038(to ZZW)the Natural Science Foundation of Guangdong Province of China,No.2017A030313842(to LHD)+1 种基金the Science and Technology Foundation of Guangdong Province of China,No.2017A050506007(to YHL)the Technology Research Foundation of Basic Research Project of Shenzhen City of China,No.JCYJ20170412161254416(to ZZW)
文摘Alpinia oxyphylla,a traditional herb,is widely used for its neuroprotective,antioxidant and memory-improving effects.However,the neuroprotective mechanisms of action of its active ingredients are unclear.In this study,we investigated the neuroprotective effects of various organic extracts of Alpinia oxyphylla on PC12 cells exposed to hydrogen peroxide-induced oxidative injury in vitro.Alpinia oxyphylla was extracted three times with 95%ethanol(representing extracts 1–3).The third 95%ethanol extract was dried and resuspended in water,and then extracted successively with petroleum ether,ethyl acetate and n-butanol(representing extracts 4–6).The cell counting kit-8 assay and microscopy were used to evaluate cell viability and observe the morphology of PC12 cells.The protective effect of the three ethanol extracts(at tested concentrations of 50,100 and 200μg/mL)against cytotoxicity to PC12 cells increased in a concentration-dependent manner.The ethyl acetate,petroleum ether and n-butanol extracts(each tested at 100,150 and 200μg/mL)had neuroprotective effects as well.The optimum effective concentration ranged from 50–200μg/mL,and the protective effect of the ethyl acetate extract was comparatively robust.These results demonstrate that organic extracts of Alpinia oxyphylla protect PC12 cells against apoptosis induced by hydrogen peroxide.Our findings should help identify the bioactive neuroprotective components in Alpinia oxyphylla.
基金financially supported by a grant from Guangdong Provincial Science and Technology Plan Program of China,No.2010B060900085
文摘The major ingredients of grassleaf sweetflag rhizome are β-asarone and eugenol, which can cross the blood-brain barrier and protect neurons. This study aimed to observe the neuroprotective effects and mechanisms of β-asarone and eugenol, components of the Chinese herb grassleaf sweetflag rhizome, on PC12 cells. First, PC12 cells were cultured with different concentrations(between 1 × 10–10 M and 1 × 10–5 M) of β-asarone and eugenol. Survival rates of PC12 cells were not significantly affected. Second, PC12 cells incubated with amyloid-beta42, which reduced cell survival, were cultured under the same conditions(1 × 10–6 M β-asarone and eugenol). The survival rates of PC12 cells significantly increased, while expression levels of the m RNAs for the pro-apoptotic protein Bax decreased, and those for the anti-apoptotic protein Bcl m RNA increased. In addition, the combination of β-asarone with eugenol achieved better results than either component alone. Our experimental findings indicate that both β-asarone and eugenol protect PC12 cells through inhibiting apoptosis, and that the combination of the two is better than either alone.
文摘To investigate the effects of hypoxia, soman and their combined ones on PC12 cells. Methods: After the PC12 cells were exposed to an atmosphere containing different concentrations of oxygen and cultured in a medium containing different concentrations of soman, the amount of lactic dehydrogenase (LDH) released by the cells and their survival rate were determined to observe the dose-dependent and time-dependent cytotoxic effects. Student’s t test and two-way ANOVA were employed to determine the statistical differences and interaction between hypoxia and soman exposure. Results: 1) Both hypoxia and soman exposures exerted dose-dependent cytotoxic effects on PC12 cells and the interaction between the two injurious factors was significant; 2)The combined effects of the two factors were equal to the sum of those exerted by each one separately; and the combined application of the two factors resulted in a more severe cytotoxicity than that caused by either agent used singly; 3) The amount of LDH released from PC12 cells could serve as a more sensitive indicator of cytotoxicity than the survival rate of the cells. Conclusion: This study demonstrates the cytotoxic effects of the combined exposure to hypoxia and soman acted in a summative manner, which suggests that the two factors might induce intracellular release of LDH in PC12 cells through different mechanisms.
文摘Ischemic cerebrovascular disease is a global health problem. According to the World Health Organization, ischemic stroke is actually the most common cause of death in the world. Ginkgo biloba extract (GbE) is a traditional Chinese medicine for angina pectoris. Ginkgo biloba plays a role in expanding blood vessels, increasing coronary and cerebral blood flow, preventing platelet aggregation, inhibiting thrombosis, and improving the microcirculation. In the present study, we investigated the mechanisms involved in the neuroprotective effects of GbE in a model of hypoxic-ischemic brain disease. We used NGF(100 ng/ml for 6 days)and OGD(5% CO2and 95% N2, 1 mmol/l NaS2O4insugar-free DMEM for 16 h) to stimulate PC12 cells and convert them into neurons in order to establish an ischemia model. The results showed that PC12 cells transformed into cells that looked like neurons and that MAP2 was up-regulated in NGF-treated PC12 cells. Cell apoptosis was found to be up-regulated after NGF stimulation and OGD. The apoptosis rate after 16 hours of OGD was 19.44%. GbE (50ng/ml) reduces apoptosis rate to 11.35%. These results may help to show that NGF treatment can be combined with OGD to establish anin vitromodel of acute ischemic brain damage. In the present study, we find that GbE effectively increases the survival rate of PC12 cells and relieves OGD damage. These results suggest that GbE has the neuroprotective effects of ischemic brain damage.
文摘BACKGROUND: Insulin receptor (IR) expression in the substantia nigra of patients with Parkinson disease (PD) is not only significantly lower than that in the substantia nigra of normal persons of the same age, but also significantly lower than that in other regions in brain of himself/herself. It suggests that the abnormal effect of insulin receptor-mediated insulin, as a neurotrophic factor, is very possibly related to the loss of dopaminergic neurons in the substantia nigra and striatum in patients with Parkinson disease. OBJECTIVE : TO observe the interventional effect of insulin on 1-methyl-4-phenylpyridinium ion (MPP^+)-induced apoptosis of PC12. DESIGN: Controlled observation SETTINGS: Department of Neurology, Beijing China-Japan Friendship Hospital; Department of Neurology Huashan Hospital Affiliated to Fudan University. MATERIALS: PC12 cells were provided by the Cell Bank, Shanghai Institute of Cell Biology, Chinese Academy of Science. MPP^+, MTT, HOECHST 33258 (Invitrogen Life Technologies), reverse transcription-polymerase chain reaction (RT-PCR) reagent (Takara Shuzo Co., Ltd.), flow cytometer (Bacton Dickionson, San Jose, CA), enzyme labelling instrument (Bio-Tek, Winooski, VT) and PCR circulation instrument (Takara Shuzo Co., Ltd) were used in this study. METHODS : This study was carried out in the Department of Neurology, Huashan Hospital Affiliated to Fudan University during June 2003 to August 2004. (1) Cell culture and experimental grouping: PC12 cells were cultured according to the method from Peng et al, then were randomized into 3 groups; blank control group, MPP^+ group and insulin group. (2) Detection of relative survival rate of cells: The relative survival rate of cells at different MPP^+ final concentrations (0, 50, 100, 200, 300, 1 000 μmol/L) and at different culture time (0, 4, 8, 12, 18, 24 hours) in the 300 Fmol/L MPP^+ group and different concentrations of insulin (0, 15, 50, 100 nmol/L) in the insulin group was detected with MTT method according to the method from Hansen et al. (3) Observation of cell apoptosis: After stained by HOECHST 33258, the apoptotic cells were observed under the fluorescence miscroscope with the method from Chen et al. (4) Dection of apoptotic rate of cells: Apoptotic rate of cells was detected with flow cytometry according to the method from Zhang et al. (5) The expression of tyrosine hydroxylase (TH) mRNA in PC12 cells was detected with RT-PCR methods according to the modified method from Peng et al. MAIN OUTCOME MEASURES : Comparison of relative survival rate, apoptosis rate, the expression of IR mRNA and TH mRNA and cell apoptosis. RESULTS: (1) After 12-hour incubation of 100, 200, 300 and 1 000 μmol/L MPP^+, the relative survival rate of PC12 cells was (72.88±2.91)%, (60.64±0.81)%, (54.56±0.76)% and (16.89±2.83)%, respectively, which was significantly lower than that of blank control group (100%, P 〈 0.05); After 12, 18 and 24-hour incubation, the relative survival rate of PC12 cells was (54.56±0.76)%, (42.43±0.16)% and (23.56±0.17)% respectively, which was significantly lower than that of blank control group (100%, P〈 0.05); When 15, 50 and 100 nmol/L insulin was pre-added to cells, the relative survival rate was (70.10±0.16)%, (78.01 ±2.43)% and (83.55±1.43)%, respectively, which was significantly higher than MPP^+ alone [(54.56±0.76)%, P 〈 0.05]. (2) Appototic bodies were rarely seen in the blank control group, but densely gathered in the MPP^+ group and were significantly decreased in the insulin group. (3) Apoptosis rate of PC12 cells in the MPP^+ group was significantly higher than that in the blank control group [(36.56±0.89)% vs. (2.34±0.23)%, P〈 0.05], and that in the 15, 50, 100 nmol/L insulin group [(30.01±0.04)%, (24.23±0.37)%, (20.01 ±1.01)%, respectivelyl was significantly lower than that in MPP^+ group (P 〈 0.05). (4) The TH mRNA expression in PC12 cells in MPP^+ group was significantly lower than that in blank control group; The expression of TH mRNA in insulin group was gradually increased in an insulin dose-dependent manner. There were no significant changes in the expression of IR mRNA under different experimental conditions. CONCLUSION: Insulin can resist MPP^+-induced apoptosis of PC12 cells, lessen the damage of PC12 cells, but does not change the gene expression of target cell insulin receptor.
基金the Natural Science Foundation of Shandong Province, No. Y2004C04
文摘BACKGROUND: Phycocyanin can relieve decrease of mitochondrial membrane potential through reducing production of active oxygen so as to protect neurons after hypoxia/reoxygenation. OBJECTIVE: To observe the effect of phycocyanin on activity of PC12 cells and mitochondrial membrane potential after hypoxia/reoxygenation. DESIGN: Randomized controlled study SETTING : Cerebrovascular Disease Institute of Affiliated Hospital, Medical College of Qingdao University MATERIALS: The experiment was carried out at the Key Laboratory of Prevention and Cure for cerebropathia in Shandong Province from October to December 2005. PC12 cells, rat chromaffin tumor cells, were provided by Storage Center of Wuhan University; phycocyanin was provided by Ocean Institute of Academia Sinica; Thiazoyl blue tetrazolium bromide (MTT) and rhodamine 123 were purchased from Sigma Company, USA; RPMI-1640 medium, fetal bovine serum and equine serum were purchased from Gibco Company, USA. METHODS: ① Culture of PC12 cells: PC12 cells were put into RPMI-1640 medium which contained 100 g/L heat inactivation equine serum and 0.05 volume fraction of fetal bovine serum and incubated in CO2 incubator at 37℃. Number of cells was regulated to 4 × 10^5 L 1, and cells were inoculated at 96-well culture plate. The final volume was 100μL. ② Model establishing and grouping: Cultured PC12 cells were randomly divided into three groups: phycocyanin group, model control group and non-hypoxia group. At 24 hours before hypoxia, culture solution in phycocyanin group was added with phycocyanin so as to make sure the final concentration of 3 g/L , but cells in model control group did not add with phycocyanin. Cells in non-hypoxia group were also randomly divided into adding phycocyanin group (the final concentration of 3 g/L) and non-adding phycocyanin group. Cells in model control group and phycocyanin group were cultured with hypoxia for 1 hour and reoxygenation for 1, 2 and 3 hours; meanwhile, cells in non-hypoxia group were cultured with oxygen and were measured at 1 hour after hypoxia/reoxygenation. ③ Detecting items: At 1, 2 and 3 hours after reoxygenation, absorbance (A value) of PC12 cells was measured with MTT technique so as to observe activity and quantity of cells. Fluorescence intensity of PC12 cells marked by rhodamine 123 was measured with confocal microscope in order to observe changes of mitochondrial membrane potential. MAEN OUTCOME MEASURES: Comparisons between quantity and activity of PC12 cells and mitochondria membrane potential at 1, 2 and 3 hours after reoxygenation. RESULTS: ① Effect of phycocyanin on quantity and activity of PC12 cells: A value was 0.924±0.027 in adding phycocyanin group and 0.924±0.033 in non-adding phycocyanin group. A value was lower in model control group and phycocyanin group than that in non-hypoxia group at 1, 2 and 3 hours after reoxygenation (0.817±0.053, 0.838±0.037, 0.875±0.029; 0.842±0.029, 0.872±0.025, 0.906±0.023, P 〈 0.05). A value was higher in phycocyanin group than that in model control group at 1, 2 and 3 after culture (P 〈 0.05). With culture time being longer, A value was increased gradually in phycocyanin group and model control group after reoxygenation (P 〈 0.05). ~ Effect of phycocyanin on mitochondrial membrane potential of PC12 cells: Fluorescence intensity was 2.967±0.253 in adding phycocyanin group and 2.962±0.294 in non-adding phycocyanin group. Fluorescence intensity was lower in model control group and phycocyanin group than that in non-hypoxia group at 1, 2 and 3 hours after hypoxia/reoxygenation (1.899±0.397, 2.119±0.414, 2.287±0.402; 2.191±0.377, 2.264±0.359, 2.436±0.471, P 〈 0.05); but it was higher in phycocyanin group than that in model control group at 1, 2 and 3 after reoxygenation (P 〈 0.05). With culture time being longer, fluorescence intensity was increased gradually in phycocyanin group and model control group after reoxygenation (P 〈 0.05). CONCLUSION: Phycocyanin and reoxygenation can protect PC12 cells after hypoxia injury through increasing mitochondrial membrane potential and cellular activity, and the effect is improved gradually with prolonging time of reoxygenation.
基金supported by the Taishan Industry Leading Talent Project, Guangdong Provincial Key R&D Program (2020B020226005)the Specific Fund Program for Basic and Applied Basic Research of Guangdong Province (2019A1515011952)+2 种基金the Fundamental Research Funds for the Central Universities (No. x2skD2192510)the Natural Science Foundation of Guangdong for Basic and Applied Basic Research (2020A1515010659)Special Support Project of Guangxi Province for Innovation driven Development (Guangdong Huapeptides Biotechnology Co., Ltd., AA17204075)。
文摘In our previous study, defatted walnut meal hydrolysate(DWMH) could attenuate D-galactose-induced acute memory deficits in vivo, and six potent active peptides including WSREEQ, WSREEQE, WSREEQEREE, ADIYTE, ADIYTEEAG and ADIYTEEAGR were identified. The aim of this study was to investigate the possible mechanism underlying their neuroprotective effects on glutamate-induced apoptosis in PC12 cells and their digestive stability. Results showed that all these peptides could attenuate the reduction of cell viability caused by glutamate in PC12 cells, especially WSREEQEREE and ADIYTEEAGR. The addition of Arg residue in WSREEQEREE and ADIYTEEAGR might be the potential reason for their stronger protective effects. Additionally, these two peptides possibly protected PC12 cells against glutamate-induced apoptosis via activating intracellular antioxidant defence(superoxide dismutase(SOD) and glutathione peroxidase(GSH-Px)) through Kelch-like ECH-associated protein 1(Keap1) inhibition, inhibiting ROS production, Ca;influx and mitochondrial membrane potential(MMP) collapse as well as regulating the expression of apoptosis-related proteins(Bax and Bcl-2). This might be due to the presence of Trp, Tyr and Arg in these two peptides. However, encapsulation of WSREEQEREE and ADIYTEEAGR should be considered based on their digestive sensibility during in vitro gastrointestinal digestion.
文摘BACKGROUND: Rotenone-induced neurotoxicity in PC 12 cells has been widely used to study the pathogenesis of Parkinson's disease. However, the precise mechanisms underlying rotenone-induced dopaminergic neuronal degeneration in Parkinson's disease remains unclear. OBJECTIVE: To establish rotenone-induced neurotoxicity in PC 12 cells, and to investigate the possible action pathways to rotenone-induced neural cell injury at the protein level. DESIGN, TIME AND SETTING: A controlled proteomics study was performed at the Department of Neurology, First Hospital, Jilin University between March 2006 and March 2007. MATERIALS: PC 12 cells were obtained from Shanghai Cell Bank of Chinese Academy of Sciences, China. Rotenone was provided by Sigma, USA. METHODS: PC 12 cells in logarithmic growth phase were treated under experimental and control conditions, respectively. A total of 0.5 μmol/L rotenone, or the same amount of Dulbecco's modified eagle's medium (DMEM), was added in the experimental and control conditions, respectively. MAIN OUTCOME MEASURES: Following 72 hours of rotenone treatment, cellular survival rate was determined by methyl thiazolyl tetrazolium assay, and apoptotic changes were detected by Hoechst 33342 staining. Total cellular protein was extracted to acquire differential protein expression data utilizing two-dimensional differential in-gel electrophoresis. To identify differential protein spots, matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF-MS) was used. RESULTS: In the MTT assay, the experimental condition induced significantly less cell survival compared to the control condition (P 〈 0.01). Hoechst 33342 staining revealed a larger number of apoptotic cells under the experimental condition compared to the control condition (P 〈 0.01), as determined by the presence of nuclear condensation, pyknosis, and nuclear fragmentation. Two-dimensional electrophoresis results showed that the differential expression of protein spots 1069 and 1538 was increased by 144% and 124%, respectively, while that of protein spot 1094 was decreased by 123% in the experimental condition compared to the control condition (P 〈 0.01). By MALDI-TOF-MS analysis and database retrieval, γ-enolase, triosephosphate isomerase 1, and eukaryotic translation initiation factor 4A were confirmed to be involved in rotenone-induced neural cell injury. CONCLUSION: γ-enolase, triosephosphate isomerase 1, and eukaryotic translation initiation factor 4A might participate in rotenone-induced neurotoxicity in PC 12 cells.
文摘Antidepressants with novel targets and without side effects are in great demand. Ferulic acid (FA) is a ubiquitous phenolic acid of low toxicity, and sodium ferulate (SF) is its sodium salt. Our previous studies have revealed that FA and SF show significant protective effect on excitotoxicity, we now test its potential neuroprotective and antidepressant-like effects. MTT assay and morphological analysis by fluorescence microscopy were adopted to measure the neuroprotective effects of SF;forced-swimming, tail-suspension, and chronic mild stress (CMS) tests were performed to assess its antidepressant-like activity. The results showed that SF had protection against H2O2-induced oxidative damage and dexamethasone (DXM)-induced neurotoxicity pheochromocytoma (PC12) cells. Acute administration of SF markedly decreased the duration of immobility during forced-swimming in rats and mice and tail-supension tests in mice. However, SF has no any effects on reserpine-induced hypothermia, 5-hydroxytryptophan-induced head-twitch response, and potentiation of noradrenaline toxicity in mice. Chronic administration of SF reversed the effects of CMS on consumption of food and sucrose solution, weight gain, and histopathology of hippocampus by light microscopy, and potently shortened the immobility time during forced-swimming test following CMS in rats. This study provides evidence that SF possesses obviously antidepressant-like activity, and the antidepressant-like effect may result from its neuroprotective effects.
基金supported by National Natural Science Foundation of China(No.81274004)2011 Program for Excellent Scientific and Technological Innovation Team of Jiangsu Higher Educationthe Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘The present study was designed to investigate whether a combination of four effective components derived from Sheng-mai san(SMXZF; ginsenoside Rb1: ginsenoside Rg1: DT^(–1)3: Schizandrol A as 6 : 9 : 4 : 5) could attenuate hydrogen peroxide(H_2O_2)-induced injury in PC12 cells, focusing on the Akt and MAPK pathways. The PC12 cells were exposed to H_2O_2(400 mmol·L^(–1)) for 1 h in the presence or absence of SMXZF pre-treatment for 24 h. Cell viability was measured by MTT assay. The efflux of lactate dehydrogenase(LDH), the intracellular content of malondialdehyde(MDA), the activities of superoxide dismutase(SOD), and caspase-3 were also determined. Cell apoptosis was measured by Hoechst 33342 staining and Annexin V-FITC/PI staining method. The expression of Bcl-2, Bax, cleaved caspase-3, Akt, and MAPKs were detected by Western blotting analyses. SMXZF pretreatment significantly increased the cell viability and SOD activity and improved the cell morphological changes, while reduced the levels of LDH and MDA at the concentrations of 0.1, 1 and 10 μg·m L^(–1). SMXZF also inhibited H_2O_2-induced apoptosis in PC12 cells. Moreover, SMXZF reduced the activity of caspase-3, up-regulated the protein ratio of Bcl-2 and Bax and inhibited the expression of cleaved caspase-3, p-Akt, p-p38, p-JNK and p-ERK1/2 in H_2O_2-induced PC12 cells. Co-incubation of Akt inhibitor or p38 inhibitor partly attenuated the protection of SMXZF against H_2O_2-injured PC12 cells. In conclusion, our findings suggested that SMXZF attenuated H_2O_2-induced injury in PC12 cells by inhibiting Akt and MAPKs signaling pathways, which might shed insights on its neuroprotective mechanism.
文摘Ferulic acid (FA) is a ubiquitous phenolic acid of low toxicity, and sodium ferulate (SF) is its sodium salt. Our previous studies have revealed that FA shows neuroprotective effect and significant antidepressant- like effect. The aim of this study was to investigate its potential neurogenesis-enhancing effect and its role in repair following stress-induced neuronal damage. MTT assay was performed to measure the effect of SF on the growth of rat pheochromocytoma (PC12) cells;morphological and immunocytochemical meth- ods were used for assessing its differentiation-induc- ing action. Chronic mild stress (CMS) tests were per- formed to establish rat model of depression. The histopathology of animal brains was studied to ana- lyze CMS-induced morphological changes and the effect of SF on the repair of CMS-induced brain in- jury. The expressions of nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) and the proliferation of neural stem cell/neural progenitor cells were assessed in the hippocampi of chronic mild stress (CMS)-induced depression-like model rats by immunohistochemistry and bromodeoxyuridine (BrdU)- incorporation assays, respectively. Our in vitro tests showed that SF promoted the proliferation of PC12 cells in the concentration range of 5 - 320 μM, and induced PC12 cells to differentiate to more mature cells with the morphological characteristics and mo- lecular marker of neuronal-like cells. In vivo tests showed that SF up-regulated the expressions of NGF and BDNF, and induced the proliferation of neural stem cell/neural progenitor cells in the hippocampi of CMS-induced depression-like model rats. This study provides evidences that SF shows neurogenesis-en- hancing effect, and its antidepressant-like effect of SF may be related directly and closely to its above-men- tioned effect.
基金supported by the National Natural Science Foun-dation of China(Nos.31800848 and 21775101).
文摘Droplet-based microfluidic technology can be utilized as a microreactor to prepare novel functional monodisperse microcapsules.In this study,a droplet-based microfluidic chip with surface modification,which allowed the one-step preparation of double emulsion microcapsules.An O/W/O double emulsion using polyethylene(glycol)diacrylate(PEGDA)solution as the intermediate water phase was prepared by regulating the hydrophilicity and hydrophobicity of the chip surface,with PEGDA microcapsules prepared using UV polymerization.And then anti-tumor drug paclitaxel and neurotoxin 6-OHDA were encapsulated in microcapsules for drug and toxicology evaluation,respectively.Compared to controls,drug-loaded mi-crocapsules caused a significant increase in the death rate of PC12 cells.This indicates that the obtained drug-loaded microcapsules could be used in drug evaluation and potentially in drug screening and deliv-ery.