The applications of laser-induced breakdown spectroscopy(LIBS) on classifying complex natural organics are relatively limited and their accuracy still requires improvement.In this work,to study the methods on classifi...The applications of laser-induced breakdown spectroscopy(LIBS) on classifying complex natural organics are relatively limited and their accuracy still requires improvement.In this work,to study the methods on classification of complex organics,three kinds of fresh leaves were measured by LIBS.100 spectra from 100 samples of each kind of leaves were measured and then they were divided into a training set and a test set in a ratio of 7:3.Two algorithms of chemometric methods including the partial least squares discriminant analysis(PLS-DA) and principal component analysis Mahalanobis distance(PCA-MD) were used to identify these leaves.By using 23 lines from 16 elements or molecules as input data,these two methods can both classify these three kinds of leaves successfully.The classification accuracies of training sets are both up to 100% by PCA-MD and PLS-DA.The classification accuracies of the test set are 93.3% by PCA-MD and 97.8% by PLS-DA.It means that PLS-DA is better than PCA-MD in classifying plant leaves.Because the components in PLS-DA process are more suitable for classification than those in PCA-MD process.We think that this work can provide a reference for plant traceability using LIBS.展开更多
对于一个特定的模式识别问题,表达和识别模式的特征具有不同的形式,它们在物理意义上是完全不同的,而且在数量级具有很大差别。该文提出了一种基于马氏距离的线性判别分析分类算法,选取判别函数为马氏距离,可以适用于具有不同类型特征...对于一个特定的模式识别问题,表达和识别模式的特征具有不同的形式,它们在物理意义上是完全不同的,而且在数量级具有很大差别。该文提出了一种基于马氏距离的线性判别分析分类算法,选取判别函数为马氏距离,可以适用于具有不同类型特征值的分类问题。将该算法应用于UC I中C red it-A、C red it-G、Iris和Veh ic le四个数据库的分类,并采用K次交叉验证方法进行实验。从实验结果中可知,与ENTROPY算法和C4.5(8)算法分类效果相比较,该文所提出的线性判别分析算法计算简单,识别率较高,是一种实际可行的分类算法。展开更多
基金supported by the Fundamental Research Funds for the Central Universities of Ministry of Education of China(No.JB190501)Science and Technology Innovation Team of Shaanxi Province(No.2019TD-002)National Natural Science Foundation of China(No.11774277)。
文摘The applications of laser-induced breakdown spectroscopy(LIBS) on classifying complex natural organics are relatively limited and their accuracy still requires improvement.In this work,to study the methods on classification of complex organics,three kinds of fresh leaves were measured by LIBS.100 spectra from 100 samples of each kind of leaves were measured and then they were divided into a training set and a test set in a ratio of 7:3.Two algorithms of chemometric methods including the partial least squares discriminant analysis(PLS-DA) and principal component analysis Mahalanobis distance(PCA-MD) were used to identify these leaves.By using 23 lines from 16 elements or molecules as input data,these two methods can both classify these three kinds of leaves successfully.The classification accuracies of training sets are both up to 100% by PCA-MD and PLS-DA.The classification accuracies of the test set are 93.3% by PCA-MD and 97.8% by PLS-DA.It means that PLS-DA is better than PCA-MD in classifying plant leaves.Because the components in PLS-DA process are more suitable for classification than those in PCA-MD process.We think that this work can provide a reference for plant traceability using LIBS.
文摘对于一个特定的模式识别问题,表达和识别模式的特征具有不同的形式,它们在物理意义上是完全不同的,而且在数量级具有很大差别。该文提出了一种基于马氏距离的线性判别分析分类算法,选取判别函数为马氏距离,可以适用于具有不同类型特征值的分类问题。将该算法应用于UC I中C red it-A、C red it-G、Iris和Veh ic le四个数据库的分类,并采用K次交叉验证方法进行实验。从实验结果中可知,与ENTROPY算法和C4.5(8)算法分类效果相比较,该文所提出的线性判别分析算法计算简单,识别率较高,是一种实际可行的分类算法。