期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Impedance-based Stability Criterion for the Stable Evaluation of Grid-connected Inverter Systems with Distributed Parameter Lines 被引量:5
1
作者 Xianghua Peng Honggeng Yang 《CSEE Journal of Power and Energy Systems》 SCIE EI CSCD 2023年第1期145-157,共13页
For a multi-inverter grid-connected system,the stability of the point of common coupling(PCC)voltage is evaluated considering the distribution parameters of the transmission lines.First,the systems on both sides of th... For a multi-inverter grid-connected system,the stability of the point of common coupling(PCC)voltage is evaluated considering the distribution parameters of the transmission lines.First,the systems on both sides of the PCC are equalized,a smallsignal equivalent circuit similar to the“current source-grid”is established,and a mathematical model for the voltage of the PCC is derived.Then,using Euler’s formula and Nyquist stability criterion,the PCC voltage stability of the grid-connected system is evaluated by the impedance analysis method under the premise that the single-side excitation is stable.In addition,the gridconnected conditions causing PCC voltage instability are studied.A phase compensation method based on an impedance phase compensation control strategy is introduced.The stability of the grid-connected system is improved by compensating the phase margin at the equivalent impedance crossover-section frequency on both sides of the grid-connected system PCC.Finally,a simulation circuit is built to simulate and analyze the proposed model and phase compensation method.The simulation results verify the accuracy and effectiveness of the theoretical analysis. 展开更多
关键词 Distributed parameter line impedance-based approach impedance phase compensation multi-inverter grid connection pcc voltage model small-signal equivalent circuit
原文传递
Study of Improved Load Sharing Methodologies for Distributed Generation Units Connected in a Microgrid 被引量:2
2
作者 Rajashree Dhua Debashis Chatterjee Swapan Kumar Goswami 《CSEE Journal of Power and Energy Systems》 SCIE 2017年第3期311-320,共10页
In this paper,an improved load sharing strategy is proposed for distributed generation units(DGs)connected in a microgrid.Conventional frequency and voltage droop control result in unacceptable active and reactive pow... In this paper,an improved load sharing strategy is proposed for distributed generation units(DGs)connected in a microgrid.Conventional frequency and voltage droop control result in unacceptable active and reactive power sharing.The proposed method formulates a suitable algorithm for load sharing in the islanded microgrid.The feeder power loss and the line impedance voltage drops are minimized so as to regulate the voltage at the point of common coupling(PCC)at its nominal value.The desired DG output voltages are calculated and a linear relationship is obtained between the shared active and reactive powers and the DG output voltages.A master DG controller sets the frequency which is followed by other DG units.The reference powers for the DG units are adjusted so as to maintain the rated PCC voltage.The proposed strategy is verified taking into account the DG ratings,unequal line impedance drops,feeder losses,change in system impedance and effect of DG local loads and formulates an improved power sharing strategy that also facilitates PCC voltage regulation under variable loading conditions.Simulation and experimental results are presented to verify the effectiveness of the proposed method. 展开更多
关键词 DG local loads distributed generation(DG) line impedance drops MICROGRID point of common coupling(pcc)voltage regulation power sharing
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部