Purpose: The genus Pseudomonas is a ubiquitous microorganism frequently detected from immunocompromised patients. The inherent resistance to numerous antimicrobial agents contributes to the opportunistic character of ...Purpose: The genus Pseudomonas is a ubiquitous microorganism frequently detected from immunocompromised patients. The inherent resistance to numerous antimicrobial agents contributes to the opportunistic character of this pathogen exhaustive monitoring of this pathogen is considered of critical importance to public health organizations. The reliable identification method able to distinguish genetic close Pseudomonas species is needed, because these organisms are difficult to differentiate by phenotypic or biochemical methods. The purpose of the present study was to design species-specific primers in order to identify and detect four Pseudomonas species which are frequently detected from the human oral cavities, and to investigate the distribution of these organisms in the living environment using a multiplex PCR. Methods: Polymerase chain reaction (PCR) primers were designed based on partial sequences of the rpoD gene of four Pseudomonas species. Swab samples were collected from fifty washstands, and the distribution of Pseudomonas species was investigated using a conventional PCR at genus level and a multiplex PCR at species level. Results: Multiplex PCR method developed in this study was able to distinguish four Pseudomonas species clearly. The genus Pseudomonas was detected from all samples (100%), whereas P. putida, P, aeruginosa, P. stutzeri and P. fluorescens were detected at 44%, 8%, 4% and 2% in fifty swab samples, respectively. Conclusion: Our developed one-step multiplex PCR method is accurate, specific, cost-effective, time-saving, and works without requiring DNA extraction. It was indicated that washstands were the uninhabitable environment for P. putida, P, aeruginosa, P. stutzeri and P. fluorescens.展开更多
Urinary tract infections (UTIs) caused by uropathogens are a significant public health problem, and their treatment primarily relies on antibiotic therapy. However, the increasing global development of antibiotic resi...Urinary tract infections (UTIs) caused by uropathogens are a significant public health problem, and their treatment primarily relies on antibiotic therapy. However, the increasing global development of antibiotic resistance necessitates updating diagnostic techniques to ensure higher sensitivity and specificity, especially with advancements in science and medicine. This study aimed to evaluate the prevalence of UTIs and antibiotic resistance profiles through urine culture, as well as to identify Klebsiella pneumoniae, Klebsiella oxytoca, and Acinetobacter spp. in urine samples using a molecular approach with multiplex real-time PCR. From May 3 to July 25, 2023, at the Pietro Annigoni Biomolecular Research Center (CERBA) and Saint Camille Hospital of Ouagadougou (HOSCO), 209 urine samples collected from patients with suspected UTIs were analyzed using both urine culture and multiplex real-time PCR. Among the 209 patients, 52.15% were male and 47.85% female, with an average age of 46.87 ± 21.33 years. Urine cultures revealed an overall UTI prevalence of 23.44%, with a prevalence of 8.13% in men versus 15.31% in women (P = 0.023). The bacterial prevalence rates were as follows: Escherichia coli (12.92%), Klebsiella spp. (7.18%), Enterobacter cloacae (1.44%), Staphylococcus aureus (0.96%), and other bacteria. Klebsiella spp. demonstrated 100% resistance to Amoxicillin and Amoxicillin/Clavulanic Acid, while Escherichia coli showed 96.2% and 65.4% resistance to Amoxicillin and Amoxicillin/Clavulanic Acid, respectively. PCR analysis of the target bacteria revealed mono-infection prevalence rates of Klebsiella pneumoniae (10.39%), Klebsiella oxytoca (7.79%), and Acinetobacter spp. (7.79%), along with a co-infection prevalence rate of Klebsiella pneumoniae/Acinetobacter spp. (1.30%). This study demonstrated that PCR, with its high sensitivity and specificity, could effectively distinguish Klebsiella pneumoniae from Klebsiella oxytoca and detect Acinetobacter spp. in less than 24 hours—something urine culture alone could not achieve. The relative ease of automating urine PCR testing, combined with its diagnostic accuracy and rapid turnaround time, makes it a valuable addition to modern medical practice for the laboratory diagnosis of UTIs.展开更多
Objective Recombinase-aided polymerase chain reaction(RAP)is a sensitive,single-tube,two-stage nucleic acid amplification method.This study aimed to develop an assay that can be used for the early diagnosis of three t...Objective Recombinase-aided polymerase chain reaction(RAP)is a sensitive,single-tube,two-stage nucleic acid amplification method.This study aimed to develop an assay that can be used for the early diagnosis of three types of bacteremia caused by Staphylococcus aureus(SA),Pseudomonas aeruginosa(PA),and Acinetobacter baumannii(AB)in the bloodstream based on recombinant human mannanbinding lectin protein(M1 protein)-conjugated magnetic bead(M1 bead)enrichment of pathogens combined with RAP.Methods Recombinant plasmids were used to evaluate the assay sensitivity.Common blood influenza bacteria were used for the specific detection.Simulated and clinical plasma samples were enriched with M1 beads and then subjected to multiple recombinase-aided PCR(M-RAP)and quantitative PCR(qPCR)assays.Kappa analysis was used to evaluate the consistency between the two assays.Results The M-RAP method had sensitivity rates of 1,10,and 1 copies/μL for the detection of SA,PA,and AB plasmids,respectively,without cross-reaction to other bacterial species.The M-RAP assay obtained results for<10 CFU/mL pathogens in the blood within 4 h,with higher sensitivity than qPCR.M-RAP and qPCR for SA,PA,and AB yielded Kappa values of 0.839,0.815,and 0.856,respectively(P<0.05).Conclusion An M-RAP assay for SA,PA,and AB in blood samples utilizing M1 bead enrichment has been developed and can be potentially used for the early detection of bacteremia.展开更多
Recently, the incidence of<span> </span><i><span>Candida</span></i><span> infections has substantially increased. Conventional identification methods for </span><...Recently, the incidence of<span> </span><i><span>Candida</span></i><span> infections has substantially increased. Conventional identification methods for </span><i><span>Candida</span></i><span> species are technically difficult to conduct and cannot accurately distinguish each species. The purpose of the present study was to design primers to identify and detect simultaneously</span><span> </span><span>eight medically important </span><i><span>Candida</span></i><span> species using one-step multiplex PCR. PCR primers were designed based on partial sequences of intergenic spacer (IGS) and internal transcribed spacer (ITS) genes of eight medically important </span><i><span>Candida</span></i><span> species. These primers were able to distinguish each </span><i><span>Candida</span></i><span> species and did not display cross-reactivity with representative </span><i><span>Candida </span></i><span>species other than the eight</span><i><span> Candida</span></i><span> species. Moreover, our developed one-step multiplex PCR method is accurate, specific, cost-effective, time-saving, and worked without requiring DNA extraction.</span>展开更多
Venereal diseases are considered to be the most prevalent infectious diseases in the worldwide. China is now faced with a year-by-year increasing incidence of sexually transmitted diseases (STD), which are spreading...Venereal diseases are considered to be the most prevalent infectious diseases in the worldwide. China is now faced with a year-by-year increasing incidence of sexually transmitted diseases (STD), which are spreading from high-risk groups to the general population. Neisseria gonorrhoeae, Chlamydia trachomatis, Ureaplasma urealyticum and herpes simplex virus-2 (HSV-2) are always regarded as the most common venereal pathogens. The "golden standard" for testing Neisseria gonorrhoeae remains to be bacteria culture or microscopic examination.展开更多
A multiplex reverse transcription polymerase chain reaction (multiplex RT-PCR) was developed for the detection of porcine epidemic diarrhea virus (PEDV), porcine transmissible gastroenteritis virus (TGEV) and porcine ...A multiplex reverse transcription polymerase chain reaction (multiplex RT-PCR) was developed for the detection of porcine epidemic diarrhea virus (PEDV), porcine transmissible gastroenteritis virus (TGEV) and porcine group A rotavirus (GAR). Three pairs of primers were designed to target the M gene, N gene, and VP7 gene of PEDV, TGEV, GAR, respectively, and the multiplex RT-PCR was developed and optimized. The results of the multiplex RT-PCR and routine single RT-PCRs were compared using samples collected in the field. In laboratory testing, the detection limit of the multiplex RT-PCR is ~35 pg RNA of combined TGEV-PEDV-GAR vaccine. In the field trial, 75 fecal specimens collected from pigs with diarrhea, in the central area of China, were simultaneously tested by the multiplex RT-PCR and by routine single RT-PCRs to evaluate the relative sensitivity and specificity of the multiplex RT-PCR. The results indicate that this new assay is equal in quality to the routine RT-PCR assays (sensitivities were 92%, 100%, 100% for PEDV, TGEV, GAR, respectively; specificity was 100% for all three viruses). The multiplex RT-PCR, with high sensitivity and specificity, provides a new and alternative tool for the detection of PEDV, TGEV and GAR.展开更多
[Objective] The research aimed to design primers that are suitable for detecting H5 and H7 subtypes of avian influenza virus (AIV) ; [Method] DNAStar was used to analyze the homology of the sequences of H5 and H7 su...[Objective] The research aimed to design primers that are suitable for detecting H5 and H7 subtypes of avian influenza virus (AIV) ; [Method] DNAStar was used to analyze the homology of the sequences of H5 and H7 subtypes of AIV accessed in GenBank, and design primers( by Primer Premier 5.0) on high homologous region of these sequences, and then amplified by RT-PCR. [Result] The multiplex RT-PCR amplification, agarose gel electrophoresis and sequencing results showed that the self-designed primers are successful for detecting AIV. [Conclusion] It is feasible to rapidly diagnose AIV through this method.展开更多
Rice blast is one of the important diseases in major rice producing areas of China. The main blast resistance genes Pi-ta and Pi-b showed broad-spectrum and durable resistance to rice blast in many rice growing areas ...Rice blast is one of the important diseases in major rice producing areas of China. The main blast resistance genes Pi-ta and Pi-b showed broad-spectrum and durable resistance to rice blast in many rice growing areas of China, which have been widely utilized in rice breeding and commercial production. In this study, on the basis of detection and verification of the genotypes of 22 rice varieties har- boring known blast resistance genes (Pi-ta and Pi-b) and blast susceptibility genes (pi-ta and pi-b), two multiple PCR systems for these genes were established by us- ing the functional markers of blast resistance genes Pi-ta and Pi-b as well as blast susceptibility genes pi-ta and pi-b, respectively. Specifically, multiple PCR system I could simultaneously detect blast resistance genes Pi-ta and Pi-b, while system II could detect simultaneously blast susceptibility genes pi-ta and pi-b. In addition, the genotypes of 336 high generation breeding materials were detected with these two multiple PCR systems. The results were highly consistent with those of conventional single mark detection, indicating that these two multiplex PCR systems were stable, reliable and time-saving. The established multiplex PCR systems may serve as a rapid and efficient method to identify and screen rice germplasm resources and can be applied in marker-assisted selection to polymerize multiple genes for blast resis- tance in rice breeding.展开更多
[Objective] This study aimed to establish a multiplex PCR system for de- tecting transgenic ingredients from Citrus. [Method] Based on the pBI121 plasmid sequences published in GenBank and actin gene sequence of Citru...[Objective] This study aimed to establish a multiplex PCR system for de- tecting transgenic ingredients from Citrus. [Method] Based on the pBI121 plasmid sequences published in GenBank and actin gene sequence of Citrus, the primers specific to CaMV35S promoter, NOS promoter, NOS terminator and actin gene were designed, to establish a multiple PCR system which could detect four types of sequences. In addition, orthogonal tests were performed to determine the optimal concentrations of all the components in PCR reaction system, as well as the optimal PCR cycle parameters. [Result] The optimal PCR reaction system should contain 2.5μl of 10xPCR buffer, 2.0μl of MgCI2 (25 mmol/L), 2.0 μl of dNTP mixture (2.5 mmol/L of each dNTP), 1.0 μl of actin gene primers (10μmol/L), 1.0μl of 35S promoter primers (10 μmol/L), 1.5 μl of NOS promoter primers (10 μmol/L) and 0.5 μl of NOS terminator primers (10μmol/L), 0.1 μg of template DNA, 1.25 U of Taq DNA polymerase; ddH20 was added to the total reaction system of 25μl. The PCR reaction program consisted of pre-denaturing at 94℃ for 5 min; 31 cycles of denaturing at 94℃ for 30 s, annealing at 64.1℃ for 45 s and extension at 72℃ for 50 s; final extension at 72℃ for 10 min. The reaction system optimized with the orthogonal tests could detect as less as 0.1% transgenic component in the tested samples. [Conclusion] The MPCR detection system established in this study can meet the requirements in theory for detecting the genetically modified ingredients in Citrus or the deep-processed products.展开更多
Objective:To develop a new technique for diagnosis of Plasmodium knowlesi and at the same time to be able to discriminate among the diverse species of Plasmodium causing human malaria.Methods:In this study the nested ...Objective:To develop a new technique for diagnosis of Plasmodium knowlesi and at the same time to be able to discriminate among the diverse species of Plasmodium causing human malaria.Methods:In this study the nested multiplex malaria PCR was redesigned,targeting the 18S rR NA gene,to identify the fifth human Plasmodium species,Plasmodium knowlesi,together with the other human Plasmodium(Plasmodium falciparum,Plasmodium vivax,Plasmodium ovale and Plasmodium malariae)by amplified fragment size using only two amplification processes and including an internal reaction control to avoid false negatives.Results:The technique was validated with 91 clinical samples obtained from patients with malaria compatible symptoms.The technique showed high sensitivity(100%)and specificity(96%)when it was compared to the reference method employed for malaria diagnosis in the Instituto de Salud Carlos栿and a published real-time PCR malaria assay.Conclusions:The technique designed is an economical,sensitive and specific alternative to current diagnosis methods.Furthermore,the method might be tested in knowlesi-malaria endemic areas with a higher number of samples to confirm the quality of the method.展开更多
This study developed a multiplex RT-PCR integrated with luminex technology to rapidly subtype simultaneously multiple influenza viruses. Primers and probes were designed to amplify NS and M genes of influenza A viruse...This study developed a multiplex RT-PCR integrated with luminex technology to rapidly subtype simultaneously multiple influenza viruses. Primers and probes were designed to amplify NS and M genes of influenza A viruses HA gene of ill, H3, H5, HT, H9 subtypes, and NA gene of the N1 and N2 subtypes. Universal super primers were introduced to establish a multiplex RT-PCR (GM RT-PCR). It included three stages of RT-PCR amplification, and then the RT-PCR products were further tested by LiquiChip probe, combined to give an influenza virus (IV) rapid high throughput subtyping test, designated as GMPLex. The IV GMPLex rapid high throughput subtyping test presents the following features: high throughput, able to determine the subtypes of 9 target genes in H1, H3, H5, H7, H9, N1, and N2 subtypes of the influenza A virus at one time; rapid, completing the influenza subtyping within 6 hours; high specificity, ensured the specificity of the different subtypes by using two nested degenerate primers and one probe, no cross reaction occurring between the subtypes, no non-specific reactions with other pathogens and high sensitivity. When used separately to detect the product of single GM RT-PCR for single H5 or N1 gene, the GMPLex test showed a sensitivity of 10-5(= 280ELDs0) forboth tests and the Luminex qualitative ratio results were 3.08 and 3.12, respectively. When used to detect the product of GM RT-PCR for H5N1 strain at the same time, both showed a sensitivity of 10-4(=2800 ELD50). The GMPLex rapid high throughput subtyping test can satisfy the needs of influenza rapid testing.展开更多
[Objective]The aim was to establish the multiplex PCR method for three virus of potato:PVA(potato virus A),TMV(Tobacco mosaic virus)and PVY(potato virus Y).[Method]According to the PVA,TMV and PVY sequences ava...[Objective]The aim was to establish the multiplex PCR method for three virus of potato:PVA(potato virus A),TMV(Tobacco mosaic virus)and PVY(potato virus Y).[Method]According to the PVA,TMV and PVY sequences available in GenBank,pairs of primer were designed for establishing a multiplex PCR method,and constructing recombinant plasmid of target genes by PCR amplified of three viruses as reference standard simple to be used in sensitivity test;PVX(Potato virus X),PVM(Potato virus M),PVS(Potato virus S),PVV(Potato virus V)and CMV(Cucumber mosaic virus)were used to carry out the specificity test and detection of 11 samples which were suspected of virus infected.[Result]The detection limit for PVA,TMV and PVY was 14,14 and 14 copies/ml,respectively.No cross-reactivity was observed with other viruses.Seven of 11 samples were infected by three viruses.[Conclusion]The multiplex PCR for PVA,TMV,PVY three viruses of potato was established successfully,which had provided basis for the detection technology of potato virus.展开更多
Objectives: To compare multiplex fluorescent PCRwith serum type-specific antibody detection in thediagnosis of herpes simplex virus (HSV) infection andto evaluate its significance in the diagnosis of genitalherpes.Met...Objectives: To compare multiplex fluorescent PCRwith serum type-specific antibody detection in thediagnosis of herpes simplex virus (HSV) infection andto evaluate its significance in the diagnosis of genitalherpes.Methods: We detected HSV infection in 121 speci-mens collected from patients with genital herpesusing both multiplex fluorescent PCR and serum type-specific antibody detection. HSV viral isolation wasused as the standard control.Results: When compared with the viral isolation, thesensitivity and specificity for multiplex fluorescentPCR were 100% and 88.89%, respectively afterdiscrepant analysis. The sensitivity and specificity fortype-specific antibody detection was 77.68 % and77.78 %, respectively. However, the type-specificantibody detected HSV in two asymptomatic patientswhile the multiplex fluorescent PCR couldn’t detectany HSV DNA from those specimens.Conclusions: Multiplex fluorescent PCR is a verysensitive and specific method for detection and typingof HSV in the lesion of genital herpes, it failed todetect HSV DNA from the asymptomatic patients.Serum type-specific antibody detection was a lesssensitive and specific test but could detect the specificantibody from some asymptomatic patients. Thecombination of these two techniques would allow rapid,sensitive and accurate detection and typing of HSVand help clinical diagnosis and epidemiologic survey-ing of genital herpes.展开更多
In recent years, food security and safety have attracted increasing attention due to the worldwide research and development of genetically modified (GM) rice, and the controversy over the commercialization of GM ric...In recent years, food security and safety have attracted increasing attention due to the worldwide research and development of genetically modified (GM) rice, and the controversy over the commercialization of GM rice. And the identification of GM rice is of great significance. Therefore, in the present study, the po- tential problems in the identification of GM rice with PCR were analyzed both at a technical level and from a theoretical perspective. In addition, PCR detection on the transgenic elements: promoter, terminator, internal reference gene and target gene was discussed, respectively. The possible solutions were proposed based on the principles of plant virology and genetic engineering.展开更多
Purpose: Fusobacterium nucleatum is an opportunistic pathogen involved in periodontal diseases, extraoral infections, and colorectal cancer. Fusobacterium necrophorum causes a variety of necrotic infections. F. nuclea...Purpose: Fusobacterium nucleatum is an opportunistic pathogen involved in periodontal diseases, extraoral infections, and colorectal cancer. Fusobacterium necrophorum causes a variety of necrotic infections. F. nucleatum and F. necrophorum are classified into five and two subspecies, respectively. Conventional identification methods were technically hard to distinguish each subspecies of two Fusobacterium species accurately. The purpose of the present study was to design primers to identify two medically important Fusobacterium species at the subspecies level, using one-step multiplex PCR. Methods: Polymerase chain reaction (PCR) primers were designed based on partial sequences of the 16S ribosomal RNA (16S rRNA) gene, RNA polymerase B (rpoB) gene, and DNA gyrase subunit B (gyrB) of each subspecies of F. nucleatum and F. necrophorum. Results: These primers were able to distinguish each subspecies of F. nucleatum and F. necrophorum and did not display cross-reactivity with representative Fusobacterium species other than F. nucleatum and F. necrophorum. Conclusion: Our developed one-step multiplex PCR method is accurate, specific, cost-effective, time-saving, and worked without requiring DNA extraction.展开更多
In an effort to simplify the procedure and to reduce the cost of fluorescence SSR analysis, the conditions of the multiplex PCR and the multiplex gel electrophoresis were optimized in the genetic analysis of sunflower...In an effort to simplify the procedure and to reduce the cost of fluorescence SSR analysis, the conditions of the multiplex PCR and the multiplex gel electrophoresis were optimized in the genetic analysis of sunflower (Helianthus annuus L.) inbred lines. Results indicated that factors for a successful multiplex PCR assay were related to the cycling touchdown annealing temperature, the balance of primer concentration at the various loci, the concentration of PCR buffer and the Taq DNA polymerase. Based on the optimization, a tailed primer strategy was outlined, and the effective ways were proposed to overcome the troubleshootings commonly encountered in the multiplex PCR and the multiplex gel electrophoresis.展开更多
Objective To develop a technique for simultaneous detection of various target genes in Roundup Ready soybean by combining multiplex PCR and low-density DNA microarray. Methods Two sets of the multiplex PCR system were...Objective To develop a technique for simultaneous detection of various target genes in Roundup Ready soybean by combining multiplex PCR and low-density DNA microarray. Methods Two sets of the multiplex PCR system were used to amplify the target genes in genetically modified (GM) soybean. Seventeen capture probes (PCR products) and 17 pairs of corresponding primers were designed according to the genetic characteristics of Rroundup Ready soybean (GTS40-3-2), maize (MonS10, Nk603, GA21), canola (T45, MS1/RF1), and rice (SCK) in many identified GM crops. All of the probes were categorized and identified as species-specific probes. One negative probe and one positive control probe were used to assess the efficiency of all reactions, and therefore eliminate any false positive and negative results. After multiplex PCR reaction, amplicons were adulterated with Cy5-dUTP and hybridized with DNA microarray. The array was then scanned to display the specific hybridization signals of target genes. The assay was applied to the analysis of sample of certified transgenic soybean (Roundup Ready GTS40-3-2) and canola (MS1/RF1). Results A combination technique of multiplex PCR and DNA microarray was successfully developed to identify multi-target genes in Roundup Ready soybean and MS 1/RF1 canola with a great specificity and reliability. Reliable identification of genetic characteristics of Roundup Ready of GM soybean from genetically modified crops was achieved at 0.5% transgenic events, indicating a high sensitivity. Conclusion A combination technique of multiplex PCR and low-density DNA microarray can reliably detect and identify the genetically modified crops.展开更多
There is an increasing requirement for traceability of aquaculture products, both for consumer protection and for food safety. There are high error rates in the conventional traceability systems depending on physical ...There is an increasing requirement for traceability of aquaculture products, both for consumer protection and for food safety. There are high error rates in the conventional traceability systems depending on physical labels. Genetic traceability technique depending on DNA-based tracking system can overcome this problem. Genealogy information is essential for genetic traceability, and microsatellite DNA marker is a good choice for pedigree analysis. As increasing genotyping throughput of microsatellites, microsatellite multiplex PCR has become a fast and cost-effective technique. As a commercially important cultured aquatic species, Pacific oyster Crassostrea gigas has the highest global production. The objective of this study was to develop microsatellite multiplex PCR panels with dye-labeled universal primer for pedigree analysis in C. gigas, and these multiplex PCRs were validated using 12 full-sib families with known pedigrees. Here we developed six informative multiplex PCRs using 18 genomic microsatellites in C. gigas. Each multiplex panel contained a single universal primer M13(-21) used as a tail on each locus-specific forward primer and a single universal primer M13(-21) labeled with fluorophores. The polymorphisms of the markers were moderate, with an average of 10.3 alleles per locus and average polymorphic information content of 0.740. The observed heterozygosity per locus ranged from 0.492 to 0.822. Cervus simulations revealed that the six panels would still be of great value when massive families were analysed. Pedigree analysis of real offspring demonstrated that 100% of the offspring were unambiguously allocated to their parents when two multiplex PCRs were used. The six sets of multiplex PCRs can be an important tool for tracing cultured individuals, population genetic analysis, and selective breeding program in C. gigas.展开更多
Objective Lower respiratory tract infections continue to pose a significant threat to human health. It is important to accurately and rapidly detect respiratory bacteria. To compensate for the limits of current respir...Objective Lower respiratory tract infections continue to pose a significant threat to human health. It is important to accurately and rapidly detect respiratory bacteria. To compensate for the limits of current respiratory bacteria detection methods, we developed a combination of multiplex polymerase chain reaction (PCR) and capillary electrophoresis (MPCE) assay to detect thirteen bacterial pathogens responsible for lower respiratory tract infections, including Streptococcus pneumoniae, Haemophilus influenzae, Moraxella catorrholis, Pseudomonas aeruginosa, Klebsiella pneumoniae, Escherichia coli, Staphylococcus aureus, Mycoplasma pneumoniae, Legionella spp., Bordetella pertussis, Mycobacterium tuberculosis complex, Corynebactefium diphthefiae, and Streptococcus pyogenes. Methods Three multiplex PCR reactions were built, and the products were analyzed by capillary electrophoresis using the high-throughput DNA analyzer. The specificity of the MPCE assay was examined and the detection limit was evaluated using DNA samples from each bacterial strain and the simulative samples of each strain. This assay was further evaluated using 152 clinical specimens and compared with real-time PCR reactions. For this assay, three nested-multiplex-PCRs were used to detect these clinical specimens. Results The detection limits of the MPCE assay for the 13 pathogens were very low and ranged from 10-7 to 10-2 ng/μL. Furthermore, analysis of the 252 clinical specimens yielded a specificity ranging from 96.5%-100.0%, and a sensitivity of 100.0% for the 13 pathogens. Conclusion This study revealed that the MPCE with high specificity and sensitivity. This assay survey of respiratory pathogens. assay is a rapid, reliable, and high-throughput method has great potential in the molecular epidemiological.展开更多
Objective To establish multiplex PCR-based assays for detecting H.influenzae and H.parainfluenzae. And the PCR-based assays were applied to detect the carriage rates of H.influenzae and H.parainfluenzae in nasopharyng...Objective To establish multiplex PCR-based assays for detecting H.influenzae and H.parainfluenzae. And the PCR-based assays were applied to detect the carriage rates of H.influenzae and H.parainfluenzae in nasopharyngeal swab specimens which were collected from healthy children. Methods Multiplex primers for species-specific PCR were designed by using DNAstar soft based on the sequences of 165 rRNA genes from genus Haemophilus to detect H.influenzae and H.parainfluenzae. Results The sensitivity of the 165 rRNA PCR assay for detecting H.influenzae and H.parainfluenzae was 97.53% and 100% respectively, and the specificity was 95.89% and 96.63% respectively. Youden's Index on the ability to detect H.influenzae and H.parainfluenzae was 0.9342 and 0.9663 respectively. 666 nasopharyngeal swab specimens were collected from healthy children. The detection rates of H.influenzae and H.parainfluenzae were 14.11% and 16.07% respectively by using isolation and culture methods. The detection rates of H.influenzae and H.parainfluenzae were 43.54% and 57.96% respectively by 165 rRNA PCR assays. The carriage rates of serotypes a, b, c, d, e, f and non-typeable isolates were 0% (0/666), 0.15% (1/666), 1.20% (8/666), 0.15% (1/666), 1.20% (8/666), 1.80% (12/666), 95.50% (636/666) respectively. Conclusion The multiplex PCR assays were very rapid, reliable and feasible methods for detection of H.influenzae and H.parainfluenzae in pharyngeal swab specimens which were compared to conventional isolation and culture methods. 95.5% of H.influenzae strains in healthy children were nontypeable. The encapsulated or typable strains were mainly three serotypes which was c, e, and f serotype.展开更多
文摘Purpose: The genus Pseudomonas is a ubiquitous microorganism frequently detected from immunocompromised patients. The inherent resistance to numerous antimicrobial agents contributes to the opportunistic character of this pathogen exhaustive monitoring of this pathogen is considered of critical importance to public health organizations. The reliable identification method able to distinguish genetic close Pseudomonas species is needed, because these organisms are difficult to differentiate by phenotypic or biochemical methods. The purpose of the present study was to design species-specific primers in order to identify and detect four Pseudomonas species which are frequently detected from the human oral cavities, and to investigate the distribution of these organisms in the living environment using a multiplex PCR. Methods: Polymerase chain reaction (PCR) primers were designed based on partial sequences of the rpoD gene of four Pseudomonas species. Swab samples were collected from fifty washstands, and the distribution of Pseudomonas species was investigated using a conventional PCR at genus level and a multiplex PCR at species level. Results: Multiplex PCR method developed in this study was able to distinguish four Pseudomonas species clearly. The genus Pseudomonas was detected from all samples (100%), whereas P. putida, P, aeruginosa, P. stutzeri and P. fluorescens were detected at 44%, 8%, 4% and 2% in fifty swab samples, respectively. Conclusion: Our developed one-step multiplex PCR method is accurate, specific, cost-effective, time-saving, and works without requiring DNA extraction. It was indicated that washstands were the uninhabitable environment for P. putida, P, aeruginosa, P. stutzeri and P. fluorescens.
文摘Urinary tract infections (UTIs) caused by uropathogens are a significant public health problem, and their treatment primarily relies on antibiotic therapy. However, the increasing global development of antibiotic resistance necessitates updating diagnostic techniques to ensure higher sensitivity and specificity, especially with advancements in science and medicine. This study aimed to evaluate the prevalence of UTIs and antibiotic resistance profiles through urine culture, as well as to identify Klebsiella pneumoniae, Klebsiella oxytoca, and Acinetobacter spp. in urine samples using a molecular approach with multiplex real-time PCR. From May 3 to July 25, 2023, at the Pietro Annigoni Biomolecular Research Center (CERBA) and Saint Camille Hospital of Ouagadougou (HOSCO), 209 urine samples collected from patients with suspected UTIs were analyzed using both urine culture and multiplex real-time PCR. Among the 209 patients, 52.15% were male and 47.85% female, with an average age of 46.87 ± 21.33 years. Urine cultures revealed an overall UTI prevalence of 23.44%, with a prevalence of 8.13% in men versus 15.31% in women (P = 0.023). The bacterial prevalence rates were as follows: Escherichia coli (12.92%), Klebsiella spp. (7.18%), Enterobacter cloacae (1.44%), Staphylococcus aureus (0.96%), and other bacteria. Klebsiella spp. demonstrated 100% resistance to Amoxicillin and Amoxicillin/Clavulanic Acid, while Escherichia coli showed 96.2% and 65.4% resistance to Amoxicillin and Amoxicillin/Clavulanic Acid, respectively. PCR analysis of the target bacteria revealed mono-infection prevalence rates of Klebsiella pneumoniae (10.39%), Klebsiella oxytoca (7.79%), and Acinetobacter spp. (7.79%), along with a co-infection prevalence rate of Klebsiella pneumoniae/Acinetobacter spp. (1.30%). This study demonstrated that PCR, with its high sensitivity and specificity, could effectively distinguish Klebsiella pneumoniae from Klebsiella oxytoca and detect Acinetobacter spp. in less than 24 hours—something urine culture alone could not achieve. The relative ease of automating urine PCR testing, combined with its diagnostic accuracy and rapid turnaround time, makes it a valuable addition to modern medical practice for the laboratory diagnosis of UTIs.
基金funded by the National Key R&D Program of China[2021YFC2301102]National Natural Science Foundation of China[82202593]Key R&D Program of Hebei Province[223777100D].
文摘Objective Recombinase-aided polymerase chain reaction(RAP)is a sensitive,single-tube,two-stage nucleic acid amplification method.This study aimed to develop an assay that can be used for the early diagnosis of three types of bacteremia caused by Staphylococcus aureus(SA),Pseudomonas aeruginosa(PA),and Acinetobacter baumannii(AB)in the bloodstream based on recombinant human mannanbinding lectin protein(M1 protein)-conjugated magnetic bead(M1 bead)enrichment of pathogens combined with RAP.Methods Recombinant plasmids were used to evaluate the assay sensitivity.Common blood influenza bacteria were used for the specific detection.Simulated and clinical plasma samples were enriched with M1 beads and then subjected to multiple recombinase-aided PCR(M-RAP)and quantitative PCR(qPCR)assays.Kappa analysis was used to evaluate the consistency between the two assays.Results The M-RAP method had sensitivity rates of 1,10,and 1 copies/μL for the detection of SA,PA,and AB plasmids,respectively,without cross-reaction to other bacterial species.The M-RAP assay obtained results for<10 CFU/mL pathogens in the blood within 4 h,with higher sensitivity than qPCR.M-RAP and qPCR for SA,PA,and AB yielded Kappa values of 0.839,0.815,and 0.856,respectively(P<0.05).Conclusion An M-RAP assay for SA,PA,and AB in blood samples utilizing M1 bead enrichment has been developed and can be potentially used for the early detection of bacteremia.
文摘Recently, the incidence of<span> </span><i><span>Candida</span></i><span> infections has substantially increased. Conventional identification methods for </span><i><span>Candida</span></i><span> species are technically difficult to conduct and cannot accurately distinguish each species. The purpose of the present study was to design primers to identify and detect simultaneously</span><span> </span><span>eight medically important </span><i><span>Candida</span></i><span> species using one-step multiplex PCR. PCR primers were designed based on partial sequences of intergenic spacer (IGS) and internal transcribed spacer (ITS) genes of eight medically important </span><i><span>Candida</span></i><span> species. These primers were able to distinguish each </span><i><span>Candida</span></i><span> species and did not display cross-reactivity with representative </span><i><span>Candida </span></i><span>species other than the eight</span><i><span> Candida</span></i><span> species. Moreover, our developed one-step multiplex PCR method is accurate, specific, cost-effective, time-saving, and worked without requiring DNA extraction.</span>
基金supported by Zhejiang Provincial Population and Family Planning Foundation of China (N20100011)
文摘Venereal diseases are considered to be the most prevalent infectious diseases in the worldwide. China is now faced with a year-by-year increasing incidence of sexually transmitted diseases (STD), which are spreading from high-risk groups to the general population. Neisseria gonorrhoeae, Chlamydia trachomatis, Ureaplasma urealyticum and herpes simplex virus-2 (HSV-2) are always regarded as the most common venereal pathogens. The "golden standard" for testing Neisseria gonorrhoeae remains to be bacteria culture or microscopic examination.
文摘A multiplex reverse transcription polymerase chain reaction (multiplex RT-PCR) was developed for the detection of porcine epidemic diarrhea virus (PEDV), porcine transmissible gastroenteritis virus (TGEV) and porcine group A rotavirus (GAR). Three pairs of primers were designed to target the M gene, N gene, and VP7 gene of PEDV, TGEV, GAR, respectively, and the multiplex RT-PCR was developed and optimized. The results of the multiplex RT-PCR and routine single RT-PCRs were compared using samples collected in the field. In laboratory testing, the detection limit of the multiplex RT-PCR is ~35 pg RNA of combined TGEV-PEDV-GAR vaccine. In the field trial, 75 fecal specimens collected from pigs with diarrhea, in the central area of China, were simultaneously tested by the multiplex RT-PCR and by routine single RT-PCRs to evaluate the relative sensitivity and specificity of the multiplex RT-PCR. The results indicate that this new assay is equal in quality to the routine RT-PCR assays (sensitivities were 92%, 100%, 100% for PEDV, TGEV, GAR, respectively; specificity was 100% for all three viruses). The multiplex RT-PCR, with high sensitivity and specificity, provides a new and alternative tool for the detection of PEDV, TGEV and GAR.
基金Supported by Important Project of Jinlin Provincial Science and Technology Department(20065020)~~
文摘[Objective] The research aimed to design primers that are suitable for detecting H5 and H7 subtypes of avian influenza virus (AIV) ; [Method] DNAStar was used to analyze the homology of the sequences of H5 and H7 subtypes of AIV accessed in GenBank, and design primers( by Primer Premier 5.0) on high homologous region of these sequences, and then amplified by RT-PCR. [Result] The multiplex RT-PCR amplification, agarose gel electrophoresis and sequencing results showed that the self-designed primers are successful for detecting AIV. [Conclusion] It is feasible to rapidly diagnose AIV through this method.
基金Supported by Agricultural Science and Technology Independent Innovation Fund of Jiangsu Province[CX(12)1003]Science and Technology Support Program of Jiangsu Province(BE2013301)Special Fund for the Construction of Modern Agriculture Industry System of China(CARS-01-47)~~
文摘Rice blast is one of the important diseases in major rice producing areas of China. The main blast resistance genes Pi-ta and Pi-b showed broad-spectrum and durable resistance to rice blast in many rice growing areas of China, which have been widely utilized in rice breeding and commercial production. In this study, on the basis of detection and verification of the genotypes of 22 rice varieties har- boring known blast resistance genes (Pi-ta and Pi-b) and blast susceptibility genes (pi-ta and pi-b), two multiple PCR systems for these genes were established by us- ing the functional markers of blast resistance genes Pi-ta and Pi-b as well as blast susceptibility genes pi-ta and pi-b, respectively. Specifically, multiple PCR system I could simultaneously detect blast resistance genes Pi-ta and Pi-b, while system II could detect simultaneously blast susceptibility genes pi-ta and pi-b. In addition, the genotypes of 336 high generation breeding materials were detected with these two multiple PCR systems. The results were highly consistent with those of conventional single mark detection, indicating that these two multiplex PCR systems were stable, reliable and time-saving. The established multiplex PCR systems may serve as a rapid and efficient method to identify and screen rice germplasm resources and can be applied in marker-assisted selection to polymerize multiple genes for blast resis- tance in rice breeding.
基金Supported by the Special Fund for Key Laboratories of Chongqing (CSTC)National Technology Research and Development Program of Ministry of Science and Technology for Countryside Field (863 Program,2011AA100205)+1 种基金Special Fund for Agro-scientific Research in the Public Interest of Ministry of Agriculture of China(201003067)Key Science and Technology Research Program of Ministry of Education of China (109131)~~
文摘[Objective] This study aimed to establish a multiplex PCR system for de- tecting transgenic ingredients from Citrus. [Method] Based on the pBI121 plasmid sequences published in GenBank and actin gene sequence of Citrus, the primers specific to CaMV35S promoter, NOS promoter, NOS terminator and actin gene were designed, to establish a multiple PCR system which could detect four types of sequences. In addition, orthogonal tests were performed to determine the optimal concentrations of all the components in PCR reaction system, as well as the optimal PCR cycle parameters. [Result] The optimal PCR reaction system should contain 2.5μl of 10xPCR buffer, 2.0μl of MgCI2 (25 mmol/L), 2.0 μl of dNTP mixture (2.5 mmol/L of each dNTP), 1.0 μl of actin gene primers (10μmol/L), 1.0μl of 35S promoter primers (10 μmol/L), 1.5 μl of NOS promoter primers (10 μmol/L) and 0.5 μl of NOS terminator primers (10μmol/L), 0.1 μg of template DNA, 1.25 U of Taq DNA polymerase; ddH20 was added to the total reaction system of 25μl. The PCR reaction program consisted of pre-denaturing at 94℃ for 5 min; 31 cycles of denaturing at 94℃ for 30 s, annealing at 64.1℃ for 45 s and extension at 72℃ for 50 s; final extension at 72℃ for 10 min. The reaction system optimized with the orthogonal tests could detect as less as 0.1% transgenic component in the tested samples. [Conclusion] The MPCR detection system established in this study can meet the requirements in theory for detecting the genetically modified ingredients in Citrus or the deep-processed products.
基金supported by AESI-ISC Ⅲ grant number PI14C Ⅲ/00014
文摘Objective:To develop a new technique for diagnosis of Plasmodium knowlesi and at the same time to be able to discriminate among the diverse species of Plasmodium causing human malaria.Methods:In this study the nested multiplex malaria PCR was redesigned,targeting the 18S rR NA gene,to identify the fifth human Plasmodium species,Plasmodium knowlesi,together with the other human Plasmodium(Plasmodium falciparum,Plasmodium vivax,Plasmodium ovale and Plasmodium malariae)by amplified fragment size using only two amplification processes and including an internal reaction control to avoid false negatives.Results:The technique was validated with 91 clinical samples obtained from patients with malaria compatible symptoms.The technique showed high sensitivity(100%)and specificity(96%)when it was compared to the reference method employed for malaria diagnosis in the Instituto de Salud Carlos栿and a published real-time PCR malaria assay.Conclusions:The technique designed is an economical,sensitive and specific alternative to current diagnosis methods.Furthermore,the method might be tested in knowlesi-malaria endemic areas with a higher number of samples to confirm the quality of the method.
基金The Basic Rasearch Project of Shenzhen(JC200903190778A)
文摘This study developed a multiplex RT-PCR integrated with luminex technology to rapidly subtype simultaneously multiple influenza viruses. Primers and probes were designed to amplify NS and M genes of influenza A viruses HA gene of ill, H3, H5, HT, H9 subtypes, and NA gene of the N1 and N2 subtypes. Universal super primers were introduced to establish a multiplex RT-PCR (GM RT-PCR). It included three stages of RT-PCR amplification, and then the RT-PCR products were further tested by LiquiChip probe, combined to give an influenza virus (IV) rapid high throughput subtyping test, designated as GMPLex. The IV GMPLex rapid high throughput subtyping test presents the following features: high throughput, able to determine the subtypes of 9 target genes in H1, H3, H5, H7, H9, N1, and N2 subtypes of the influenza A virus at one time; rapid, completing the influenza subtyping within 6 hours; high specificity, ensured the specificity of the different subtypes by using two nested degenerate primers and one probe, no cross reaction occurring between the subtypes, no non-specific reactions with other pathogens and high sensitivity. When used separately to detect the product of single GM RT-PCR for single H5 or N1 gene, the GMPLex test showed a sensitivity of 10-5(= 280ELDs0) forboth tests and the Luminex qualitative ratio results were 3.08 and 3.12, respectively. When used to detect the product of GM RT-PCR for H5N1 strain at the same time, both showed a sensitivity of 10-4(=2800 ELD50). The GMPLex rapid high throughput subtyping test can satisfy the needs of influenza rapid testing.
文摘[Objective]The aim was to establish the multiplex PCR method for three virus of potato:PVA(potato virus A),TMV(Tobacco mosaic virus)and PVY(potato virus Y).[Method]According to the PVA,TMV and PVY sequences available in GenBank,pairs of primer were designed for establishing a multiplex PCR method,and constructing recombinant plasmid of target genes by PCR amplified of three viruses as reference standard simple to be used in sensitivity test;PVX(Potato virus X),PVM(Potato virus M),PVS(Potato virus S),PVV(Potato virus V)and CMV(Cucumber mosaic virus)were used to carry out the specificity test and detection of 11 samples which were suspected of virus infected.[Result]The detection limit for PVA,TMV and PVY was 14,14 and 14 copies/ml,respectively.No cross-reactivity was observed with other viruses.Seven of 11 samples were infected by three viruses.[Conclusion]The multiplex PCR for PVA,TMV,PVY three viruses of potato was established successfully,which had provided basis for the detection technology of potato virus.
文摘Objectives: To compare multiplex fluorescent PCRwith serum type-specific antibody detection in thediagnosis of herpes simplex virus (HSV) infection andto evaluate its significance in the diagnosis of genitalherpes.Methods: We detected HSV infection in 121 speci-mens collected from patients with genital herpesusing both multiplex fluorescent PCR and serum type-specific antibody detection. HSV viral isolation wasused as the standard control.Results: When compared with the viral isolation, thesensitivity and specificity for multiplex fluorescentPCR were 100% and 88.89%, respectively afterdiscrepant analysis. The sensitivity and specificity fortype-specific antibody detection was 77.68 % and77.78 %, respectively. However, the type-specificantibody detected HSV in two asymptomatic patientswhile the multiplex fluorescent PCR couldn’t detectany HSV DNA from those specimens.Conclusions: Multiplex fluorescent PCR is a verysensitive and specific method for detection and typingof HSV in the lesion of genital herpes, it failed todetect HSV DNA from the asymptomatic patients.Serum type-specific antibody detection was a lesssensitive and specific test but could detect the specificantibody from some asymptomatic patients. Thecombination of these two techniques would allow rapid,sensitive and accurate detection and typing of HSVand help clinical diagnosis and epidemiologic survey-ing of genital herpes.
基金Supported by Key Special Project for Breeding and Cultivation of GMO Varieties(2011ZX08001-001,2014ZX0800101B)Special Fund from the Department of Finance of Hubei Province(2011-2015)Collaborative Breeding Project for Rice(2013-2017)
文摘In recent years, food security and safety have attracted increasing attention due to the worldwide research and development of genetically modified (GM) rice, and the controversy over the commercialization of GM rice. And the identification of GM rice is of great significance. Therefore, in the present study, the po- tential problems in the identification of GM rice with PCR were analyzed both at a technical level and from a theoretical perspective. In addition, PCR detection on the transgenic elements: promoter, terminator, internal reference gene and target gene was discussed, respectively. The possible solutions were proposed based on the principles of plant virology and genetic engineering.
文摘Purpose: Fusobacterium nucleatum is an opportunistic pathogen involved in periodontal diseases, extraoral infections, and colorectal cancer. Fusobacterium necrophorum causes a variety of necrotic infections. F. nucleatum and F. necrophorum are classified into five and two subspecies, respectively. Conventional identification methods were technically hard to distinguish each subspecies of two Fusobacterium species accurately. The purpose of the present study was to design primers to identify two medically important Fusobacterium species at the subspecies level, using one-step multiplex PCR. Methods: Polymerase chain reaction (PCR) primers were designed based on partial sequences of the 16S ribosomal RNA (16S rRNA) gene, RNA polymerase B (rpoB) gene, and DNA gyrase subunit B (gyrB) of each subspecies of F. nucleatum and F. necrophorum. Results: These primers were able to distinguish each subspecies of F. nucleatum and F. necrophorum and did not display cross-reactivity with representative Fusobacterium species other than F. nucleatum and F. necrophorum. Conclusion: Our developed one-step multiplex PCR method is accurate, specific, cost-effective, time-saving, and worked without requiring DNA extraction.
文摘In an effort to simplify the procedure and to reduce the cost of fluorescence SSR analysis, the conditions of the multiplex PCR and the multiplex gel electrophoresis were optimized in the genetic analysis of sunflower (Helianthus annuus L.) inbred lines. Results indicated that factors for a successful multiplex PCR assay were related to the cycling touchdown annealing temperature, the balance of primer concentration at the various loci, the concentration of PCR buffer and the Taq DNA polymerase. Based on the optimization, a tailed primer strategy was outlined, and the effective ways were proposed to overcome the troubleshootings commonly encountered in the multiplex PCR and the multiplex gel electrophoresis.
基金National Basic Research Program of China (No. 2001CB109001)National High-Tech Research Program of China (No. 2002AA212041)
文摘Objective To develop a technique for simultaneous detection of various target genes in Roundup Ready soybean by combining multiplex PCR and low-density DNA microarray. Methods Two sets of the multiplex PCR system were used to amplify the target genes in genetically modified (GM) soybean. Seventeen capture probes (PCR products) and 17 pairs of corresponding primers were designed according to the genetic characteristics of Rroundup Ready soybean (GTS40-3-2), maize (MonS10, Nk603, GA21), canola (T45, MS1/RF1), and rice (SCK) in many identified GM crops. All of the probes were categorized and identified as species-specific probes. One negative probe and one positive control probe were used to assess the efficiency of all reactions, and therefore eliminate any false positive and negative results. After multiplex PCR reaction, amplicons were adulterated with Cy5-dUTP and hybridized with DNA microarray. The array was then scanned to display the specific hybridization signals of target genes. The assay was applied to the analysis of sample of certified transgenic soybean (Roundup Ready GTS40-3-2) and canola (MS1/RF1). Results A combination technique of multiplex PCR and DNA microarray was successfully developed to identify multi-target genes in Roundup Ready soybean and MS 1/RF1 canola with a great specificity and reliability. Reliable identification of genetic characteristics of Roundup Ready of GM soybean from genetically modified crops was achieved at 0.5% transgenic events, indicating a high sensitivity. Conclusion A combination technique of multiplex PCR and low-density DNA microarray can reliably detect and identify the genetically modified crops.
基金supported by the Shandong Seed Projectthe National Natural Science Foundation of China(No.31372524)Science and Technology Development Plan of Shandong Province,China(No.2014GHY 115002)
文摘There is an increasing requirement for traceability of aquaculture products, both for consumer protection and for food safety. There are high error rates in the conventional traceability systems depending on physical labels. Genetic traceability technique depending on DNA-based tracking system can overcome this problem. Genealogy information is essential for genetic traceability, and microsatellite DNA marker is a good choice for pedigree analysis. As increasing genotyping throughput of microsatellites, microsatellite multiplex PCR has become a fast and cost-effective technique. As a commercially important cultured aquatic species, Pacific oyster Crassostrea gigas has the highest global production. The objective of this study was to develop microsatellite multiplex PCR panels with dye-labeled universal primer for pedigree analysis in C. gigas, and these multiplex PCRs were validated using 12 full-sib families with known pedigrees. Here we developed six informative multiplex PCRs using 18 genomic microsatellites in C. gigas. Each multiplex panel contained a single universal primer M13(-21) used as a tail on each locus-specific forward primer and a single universal primer M13(-21) labeled with fluorophores. The polymorphisms of the markers were moderate, with an average of 10.3 alleles per locus and average polymorphic information content of 0.740. The observed heterozygosity per locus ranged from 0.492 to 0.822. Cervus simulations revealed that the six panels would still be of great value when massive families were analysed. Pedigree analysis of real offspring demonstrated that 100% of the offspring were unambiguously allocated to their parents when two multiplex PCRs were used. The six sets of multiplex PCRs can be an important tool for tracing cultured individuals, population genetic analysis, and selective breeding program in C. gigas.
基金supported by grants from the Priority Project on Infectious Disease Control and Prevention(2012ZX10004215,2013ZX10004610)from Ministry of Health,China,and the Science Foundation for the State Key Laboratory for Infectious Disease Prevention and Control from China(Grant No.2015SKLID508)the National Natural Science Foundation of China(Grant No.81671985)and(Grant No.81170009)
文摘Objective Lower respiratory tract infections continue to pose a significant threat to human health. It is important to accurately and rapidly detect respiratory bacteria. To compensate for the limits of current respiratory bacteria detection methods, we developed a combination of multiplex polymerase chain reaction (PCR) and capillary electrophoresis (MPCE) assay to detect thirteen bacterial pathogens responsible for lower respiratory tract infections, including Streptococcus pneumoniae, Haemophilus influenzae, Moraxella catorrholis, Pseudomonas aeruginosa, Klebsiella pneumoniae, Escherichia coli, Staphylococcus aureus, Mycoplasma pneumoniae, Legionella spp., Bordetella pertussis, Mycobacterium tuberculosis complex, Corynebactefium diphthefiae, and Streptococcus pyogenes. Methods Three multiplex PCR reactions were built, and the products were analyzed by capillary electrophoresis using the high-throughput DNA analyzer. The specificity of the MPCE assay was examined and the detection limit was evaluated using DNA samples from each bacterial strain and the simulative samples of each strain. This assay was further evaluated using 152 clinical specimens and compared with real-time PCR reactions. For this assay, three nested-multiplex-PCRs were used to detect these clinical specimens. Results The detection limits of the MPCE assay for the 13 pathogens were very low and ranged from 10-7 to 10-2 ng/μL. Furthermore, analysis of the 252 clinical specimens yielded a specificity ranging from 96.5%-100.0%, and a sensitivity of 100.0% for the 13 pathogens. Conclusion This study revealed that the MPCE with high specificity and sensitivity. This assay survey of respiratory pathogens. assay is a rapid, reliable, and high-throughput method has great potential in the molecular epidemiological.
文摘Objective To establish multiplex PCR-based assays for detecting H.influenzae and H.parainfluenzae. And the PCR-based assays were applied to detect the carriage rates of H.influenzae and H.parainfluenzae in nasopharyngeal swab specimens which were collected from healthy children. Methods Multiplex primers for species-specific PCR were designed by using DNAstar soft based on the sequences of 165 rRNA genes from genus Haemophilus to detect H.influenzae and H.parainfluenzae. Results The sensitivity of the 165 rRNA PCR assay for detecting H.influenzae and H.parainfluenzae was 97.53% and 100% respectively, and the specificity was 95.89% and 96.63% respectively. Youden's Index on the ability to detect H.influenzae and H.parainfluenzae was 0.9342 and 0.9663 respectively. 666 nasopharyngeal swab specimens were collected from healthy children. The detection rates of H.influenzae and H.parainfluenzae were 14.11% and 16.07% respectively by using isolation and culture methods. The detection rates of H.influenzae and H.parainfluenzae were 43.54% and 57.96% respectively by 165 rRNA PCR assays. The carriage rates of serotypes a, b, c, d, e, f and non-typeable isolates were 0% (0/666), 0.15% (1/666), 1.20% (8/666), 0.15% (1/666), 1.20% (8/666), 1.80% (12/666), 95.50% (636/666) respectively. Conclusion The multiplex PCR assays were very rapid, reliable and feasible methods for detection of H.influenzae and H.parainfluenzae in pharyngeal swab specimens which were compared to conventional isolation and culture methods. 95.5% of H.influenzae strains in healthy children were nontypeable. The encapsulated or typable strains were mainly three serotypes which was c, e, and f serotype.