Small radiation fields are abundantly used in modern radiotherapy techniques like in IMRT and SRS. In order to commission these techniques, dosimetric data for small fields is required. The purpose of this study is to...Small radiation fields are abundantly used in modern radiotherapy techniques like in IMRT and SRS. In order to commission these techniques, dosimetric data for small fields is required. The purpose of this study is to compare dosimetric measurements with two different ion chambers cc13, and cc01 for smaller fields. Dosimetric measurements are beam profile, output factor, pdds, and collimator factor. Dosimetric data is acquired in water phantom for two different photon beam energies 6 MV and 15 MV with zero gantry angle. In beam profiles cc13 chamber, measure wider penumbra as compare to cc01. And this wider measurement of penumbra occurs for smaller as well as for larger field sizes. Accumulated relative error in the measurement of penumbra for number of field sizes and 6 MV at dmax, and at 10 cm depth are 34.32% and 27.72% respectively. Accumulated relative error in the measurement of penumbra for number of field sizes and 15 MV at dmax, and at 10 cm depth are 28.49% and 23.92%. In case of output factor for smaller fields cc13 underestimates the output factor relative to cc01, with non-linear increase for smaller fields. But for larger fields, this increase in output factor is almost linear difference of two chambers is decreased. For very smaller fields × 2 cm, relative error in output factor of cc13 and cc01 is greater than 5% and rapidly increases with decreasing field size. But for lager fields, this relative error is negligible. In measurement of pdds after the buildup region difference occurs in the response of two chambers cc13 and cc01 for smaller fields. For field sizes ≤2 cm × 2 cm average cc13-cc01 at various depths 30 cm, 40 cm, 50 cm, 60 cm, 70 cm, and 80 cm is almost greater than 0.5 cm. And similarly as output factor, this difference (cc13-cc01) increases with field size decreasing.展开更多
In order to derive the linac photon spectrum accurately both the prior constrained model and the genetic algorithm GA are employed using the measured percentage depth dose PDD data and the Monte Carlo simulated monoen...In order to derive the linac photon spectrum accurately both the prior constrained model and the genetic algorithm GA are employed using the measured percentage depth dose PDD data and the Monte Carlo simulated monoenergetic PDDs where two steps are involved.First the spectrum is modeled as a prior analytical function with two parameters αand Ep optimized with the GA.Secondly the linac photon spectrum is modeled as a discretization constrained model optimized with the GA. The solved analytical function in the first step is used to generate initial solutions for the GA’s first run in this step.The method is applied to the Varian iX linear accelerator to derive the energy spectra of its 6 and 15 MV photon beams.The experimental results show that both the reconstructed spectrums and the derived PDDs with the proposed method are in good agreement with those calculated using the Monte Carlo simulation.展开更多
文摘Small radiation fields are abundantly used in modern radiotherapy techniques like in IMRT and SRS. In order to commission these techniques, dosimetric data for small fields is required. The purpose of this study is to compare dosimetric measurements with two different ion chambers cc13, and cc01 for smaller fields. Dosimetric measurements are beam profile, output factor, pdds, and collimator factor. Dosimetric data is acquired in water phantom for two different photon beam energies 6 MV and 15 MV with zero gantry angle. In beam profiles cc13 chamber, measure wider penumbra as compare to cc01. And this wider measurement of penumbra occurs for smaller as well as for larger field sizes. Accumulated relative error in the measurement of penumbra for number of field sizes and 6 MV at dmax, and at 10 cm depth are 34.32% and 27.72% respectively. Accumulated relative error in the measurement of penumbra for number of field sizes and 15 MV at dmax, and at 10 cm depth are 28.49% and 23.92%. In case of output factor for smaller fields cc13 underestimates the output factor relative to cc01, with non-linear increase for smaller fields. But for larger fields, this increase in output factor is almost linear difference of two chambers is decreased. For very smaller fields × 2 cm, relative error in output factor of cc13 and cc01 is greater than 5% and rapidly increases with decreasing field size. But for lager fields, this relative error is negligible. In measurement of pdds after the buildup region difference occurs in the response of two chambers cc13 and cc01 for smaller fields. For field sizes ≤2 cm × 2 cm average cc13-cc01 at various depths 30 cm, 40 cm, 50 cm, 60 cm, 70 cm, and 80 cm is almost greater than 0.5 cm. And similarly as output factor, this difference (cc13-cc01) increases with field size decreasing.
文摘In order to derive the linac photon spectrum accurately both the prior constrained model and the genetic algorithm GA are employed using the measured percentage depth dose PDD data and the Monte Carlo simulated monoenergetic PDDs where two steps are involved.First the spectrum is modeled as a prior analytical function with two parameters αand Ep optimized with the GA.Secondly the linac photon spectrum is modeled as a discretization constrained model optimized with the GA. The solved analytical function in the first step is used to generate initial solutions for the GA’s first run in this step.The method is applied to the Varian iX linear accelerator to derive the energy spectra of its 6 and 15 MV photon beams.The experimental results show that both the reconstructed spectrums and the derived PDDs with the proposed method are in good agreement with those calculated using the Monte Carlo simulation.