The rate of regional sea level rise (SLR) provides important information about the impact of human activities on climate change. However, accurate estimation of regional SLR can be severely affected by sea surface h...The rate of regional sea level rise (SLR) provides important information about the impact of human activities on climate change. However, accurate estimation of regional SLR can be severely affected by sea surface height (SSH) change caused by the Pacific Decadal Oscillation (PDO-SSH). Here, the PDO- SSH signal is extracted from satellite altimeter data by multi-variable linear regression, and regional SLR in the altimeter era is calculated, before and after removing that signal. The results show that PDO-SSH trends are rising in the western Pacific and falling in the eastern Pacific, with the strongest signal confined to the tropical and North Pacific. Over the past 20 years, the PDO-SSH accounts for about 30%/-400% of altimeter-observed SLR in the regions 8° 15°N, 130°-160°E and 30°-40°N, 170°-220°E. Along the coast &North America, the PDO-SSH signal dramatically offsets the coastal SLR, as the sea level trends change sign from falling to rising.展开更多
The subtropical North and South Pacific Meridional Modes(NPMM and SPMM)are well known precursors of El Niño-Southern Oscillation(ENSO).However,relationship between them is not constant.In the early 1980,the relat...The subtropical North and South Pacific Meridional Modes(NPMM and SPMM)are well known precursors of El Niño-Southern Oscillation(ENSO).However,relationship between them is not constant.In the early 1980,the relationship experienced an interdecadal transition.Changes in this connection can be attributed mainly to the phase change of the Pacific decadal oscillation(PDO).During the positive phase of PDO,a shallower thermocline in the central Pacific is responsible for the stronger trade wind charging(TWC)mechanism,which leads to a stronger equatorial subsurface temperature evolution.This dynamic process strengthens the connection between NPMM and ENSO.Associated with the negative phase of PDO,a shallower thermocline over southeastern Pacific allows an enhanced wind-evaporation-SST(WES)feedback,strengthening the connection between SPMM and ENSO.Using 35 Coupled Model Intercomparison Project Phase 6(CMIP6)models,we examined the NPMM/SPMM performance and its connection with ENSO in the historical runs.The great majority of CMIP6 models can reproduce the pattern of NPMM and SPMM well,but they reveal discrepant ENSO and NPMM/SPMM relationship.The intermodal uncertainty for the connection of NPMM-ENSO is due to different TWC mechanism.A stronger TWC mechanism will enhance NPMM forcing.For SPMM,few models can simulate a good relationship with ENSO.The intermodel spread in the relationship of SPMM and ENSO owing to SST bias in the southeastern Pacific,as WES feedback is stronger when the southeastern Pacific is warmer.展开更多
基金Supported by the National Natural Science Foundation of China(No.41376028)the Knowledge Innovation Program of Chinese Academy of Sciences(CAS)(No.Y22114101Q)+2 种基金the National Basic Research Program of China(973 Program)(No.2013CB956202)the"100-Talent Project"of Chinese Academy of Sciences,China(No.Y32109101L)the Special Funds of CAS(No.XDAl 1040205)
文摘The rate of regional sea level rise (SLR) provides important information about the impact of human activities on climate change. However, accurate estimation of regional SLR can be severely affected by sea surface height (SSH) change caused by the Pacific Decadal Oscillation (PDO-SSH). Here, the PDO- SSH signal is extracted from satellite altimeter data by multi-variable linear regression, and regional SLR in the altimeter era is calculated, before and after removing that signal. The results show that PDO-SSH trends are rising in the western Pacific and falling in the eastern Pacific, with the strongest signal confined to the tropical and North Pacific. Over the past 20 years, the PDO-SSH accounts for about 30%/-400% of altimeter-observed SLR in the regions 8° 15°N, 130°-160°E and 30°-40°N, 170°-220°E. Along the coast &North America, the PDO-SSH signal dramatically offsets the coastal SLR, as the sea level trends change sign from falling to rising.
基金Supported by the National Natural Science Foundation of China(NSFC)(No.41976027)。
文摘The subtropical North and South Pacific Meridional Modes(NPMM and SPMM)are well known precursors of El Niño-Southern Oscillation(ENSO).However,relationship between them is not constant.In the early 1980,the relationship experienced an interdecadal transition.Changes in this connection can be attributed mainly to the phase change of the Pacific decadal oscillation(PDO).During the positive phase of PDO,a shallower thermocline in the central Pacific is responsible for the stronger trade wind charging(TWC)mechanism,which leads to a stronger equatorial subsurface temperature evolution.This dynamic process strengthens the connection between NPMM and ENSO.Associated with the negative phase of PDO,a shallower thermocline over southeastern Pacific allows an enhanced wind-evaporation-SST(WES)feedback,strengthening the connection between SPMM and ENSO.Using 35 Coupled Model Intercomparison Project Phase 6(CMIP6)models,we examined the NPMM/SPMM performance and its connection with ENSO in the historical runs.The great majority of CMIP6 models can reproduce the pattern of NPMM and SPMM well,but they reveal discrepant ENSO and NPMM/SPMM relationship.The intermodal uncertainty for the connection of NPMM-ENSO is due to different TWC mechanism.A stronger TWC mechanism will enhance NPMM forcing.For SPMM,few models can simulate a good relationship with ENSO.The intermodel spread in the relationship of SPMM and ENSO owing to SST bias in the southeastern Pacific,as WES feedback is stronger when the southeastern Pacific is warmer.