This study is to understand the impact of operating conditions, especially initial operation temperature (T<sub>ini</sub>) which is set in a high temperature range, on the temperature profile of the interf...This study is to understand the impact of operating conditions, especially initial operation temperature (T<sub>ini</sub>) which is set in a high temperature range, on the temperature profile of the interface between the polymer electrolyte membrane (PEM) and the catalyst layer at the cathode (i.e., the reaction surface) in a single cell of polymer electrolyte fuel cell (PEFC). A 1D multi-plate heat transfer model based on the temperature data of the separator measured using the thermograph in a power generation experiment was developed to evaluate the reaction surface temperature (T<sub>react</sub>). In addition, to validate the proposed heat transfer model, T<sub>react</sub> obtained from the model was compared with that from the 3D numerical simulation using CFD software COMSOL Multiphysics which solves the continuity equation, Brinkman equation, Maxwell-Stefan equation, Butler-Volmer equation as well as heat transfer equation. As a result, the temperature gap between the results obtained by 1D heat transfer model and those obtained by 3D numerical simulation is below approximately 0.5 K. The simulation results show the change in the molar concentration of O<sub>2</sub> and H<sub>2</sub>O from the inlet to the outlet is more even with the increase in T<sub>ini</sub> due to the lower performance of O<sub>2</sub> reduction reaction. The change in the current density from the inlet to the outlet is more even with the increase in T<sub>ini</sub> and the value of current density is smaller with the increase in T<sub>ini </sub>due to the increase in ohmic over-potential and concentration over-potential. It is revealed that the change in T<sub>react</sub> from the inlet to the outlet is more even with the increase in T<sub>ini</sub> irrespective of heat transfer model. This is because the generated heat from the power generation is lower with the increase in T<sub>ini </sub>due to the lower performance of O<sub>2</sub> reduction reaction.展开更多
本刊讯 近日,亚太森博(山东)浆纸有限公司收到了由sGs(通标标准技术服务有限公司)颁发的PEFC-C0c产销监管链认证证书,认证标准为PEFC ST 2002:2013 Chain of Custody of Forest Based Products-Requirements,认证范围包括木浆和...本刊讯 近日,亚太森博(山东)浆纸有限公司收到了由sGs(通标标准技术服务有限公司)颁发的PEFC-C0c产销监管链认证证书,认证标准为PEFC ST 2002:2013 Chain of Custody of Forest Based Products-Requirements,认证范围包括木浆和白卡纸板的生产和销售。展开更多
According to the New Energy and Industry Technology Development Organization(NEDO)road map 2017 of Japan,polymer electrolyte fuel cell(PEFC)system is required to be operated at 90°C and 100°C for stationary ...According to the New Energy and Industry Technology Development Organization(NEDO)road map 2017 of Japan,polymer electrolyte fuel cell(PEFC)system is required to be operated at 90°C and 100°C for stationary and mobility applications,respectively.However,the general PEFC,which has Nafion membrane is operated within the temperature range between 60°C and 80°C.It is important to understand the temperature distribution in a PEFC cell for analyzing performance on working life span of PEFC.This study focuses on the combination of thin polymer electrolyte membrane(PEM)and thin gas diffusion layer(GDL)to improve power generation performance under relatively higher temperature operation conditions.In addition,this study also focuses on effect of micro porous layer(MPL),which can promote the mass transfer,over temperature distribution.The key aim of this study is to analyze impact of MPL of temperature distribution on the reaction surface(Treact)of a cell of PEFC using thin PEM and GDL with variations of H2 and O2 supply flow rates and their relative humidity(RH)with changing the initial operating temperature(Tini)from 80°C to 100°C.As a result,the distribution of Treact without MPL,for anode and cathode at 80%RH and Tini at 80°C and 90°C,is higher than normal conditions.There is a small difference in temperature distribution among different RH conditions with MPL.The distributions of Treact are relatively flat and almost the same among different RH conditions without MPL at Tini=100°C,while the distributions of Treact with MPL are almost the same among different RH conditions.This study is revealed that more even temperature distribution and higher power generation performance can be obtained in the case without MPL compared to the case with MPL.展开更多
Key words,: Two 1-D dynamical and isothermal models of cathode gas diffusion layer(GDL) with isobaric and non-isobaric operations for polymer electrolyte fuel cells(PEFCs) were developed and implemented in COMSOL...Key words,: Two 1-D dynamical and isothermal models of cathode gas diffusion layer(GDL) with isobaric and non-isobaric operations for polymer electrolyte fuel cells(PEFCs) were developed and implemented in COMSOL Multiphysics v3.5.The artificial diffusion coefficient was introduced as well to make the numerical computation be stable.In the non-isobaric model,the pressure of gas mixture was obtained by summing up the governing equations of gaseous components,instead of Navier-Stoks equation.Comparison of the two models were carried out with the steady-states and dynamical simulations under given conditions.The corresponding analysis based on the simulated results was also given simultaneously.This paper is contributed to finding the differences between the isobaric and non-isobaric operation in the two-phase model of cathode GDL.展开更多
This paper proposes an improved optimal operation planning method for residential PEFC-CGS (Polymer Electrolyte Fuel CellCo-Generation System). Residential PEFC-CGS has recently been gathering attention as one of the ...This paper proposes an improved optimal operation planning method for residential PEFC-CGS (Polymer Electrolyte Fuel CellCo-Generation System). Residential PEFC-CGS has recently been gathering attention as one of the distributed power sources with high efficiency and low environmental impacts. Previous research pointed out that the output variations of PEFC adversely affect the durability. It can be surmised that smaller output variations will be desired to extend durability years. However, in this field, ramping rate have not been sufficiently considered. For local search and tabu search, ramping rate constraint makes our operation planning difficult because it restricts the search for feasible neighborhood solutions. Therefore, the authors proposed a method to deal with typical and harsher ramping rate constraints in comparison with conventional methods. There are two key points for the improvement. One is the reinforcement of the search along the output power axis;the other is to make use of the strategy of tabu search which avoids the local optimal solutions. The simulation results show the effectiveness of the proposed method in the daily operation planning. Furthermore, in the case using typical ramping rate parameter, it is confirmed that tabu search doesn’t contribute the reduction of daily operational cost due to the above stated restriction of the search area.展开更多
Polymer Electrolyte Fuel Cell(PEFC)is required to be operated at temperature at 100℃ for fuel cell vehicle applications during the period from 2020 to 2025 in Japan.It is expected that micro porous layer(MPL)and thin...Polymer Electrolyte Fuel Cell(PEFC)is required to be operated at temperature at 100℃ for fuel cell vehicle applications during the period from 2020 to 2025 in Japan.It is expected that micro porous layer(MPL)and thinner polymer electrolyte membrane(PEM)would enhance the power generation performance of PEFC at this temperature.The key objective of this study is to analyse the impact of MPL and thickness of PEM on the temperature distributions of interface between the PEM and catalyst layer at the cathode(i.e.,the reaction surface)in a single PEFC.A 1D multi-plate heat transfer model,considering vapor transfer,which is based on temperature data of separator measured using thermograph in power generation process.It is developed to evaluate temperature at the reaction surface.This study is investigated the effect of flow rate and relative humidity of supply gases on temperature distribution on reaction surface.The study reveals that the impact of flow rate of supply gas on temperature distribution on reaction surface is smaller with and without MPL.It is observed that the even temperature distribution on reaction surface as well as higher power generation performance can be obtained with MPL irrespective of thickness of PEM and relative humidity conditions.展开更多
本刊讯(金东纸业 消息)近日,金东纸业顺利通过SGS公司对PEFC产销监管链的扩项审查,并取得了证书。本次审查严格按照新标准PEFC ST 2002:2010的要求执行,并增加了浆、纸贸易的认证范围。同时为了满足新标准要求,加强金东纸业PEFC...本刊讯(金东纸业 消息)近日,金东纸业顺利通过SGS公司对PEFC产销监管链的扩项审查,并取得了证书。本次审查严格按照新标准PEFC ST 2002:2010的要求执行,并增加了浆、纸贸易的认证范围。同时为了满足新标准要求,加强金东纸业PEFC产销监管链供应链的管理,从2011年7月份起对12家贸易公司进行辅导培训,帮助12家贸易公司全部通过PEFC产销监管链认证并取得证书。展开更多
The purpose of this study is to point out the dominant factor of heat and mass distribution in single-cell PEFC (polymer electrolyte fuel cell). The numerical simulation by simple 3D model to clarify the influence o...The purpose of this study is to point out the dominant factor of heat and mass distribution in single-cell PEFC (polymer electrolyte fuel cell). The numerical simulation by simple 3D model to clarify the influence of cell components structure on heat and mass transfer phenomena as well as power generation experiment and measurement of in-plane temperature distribution by thermograph was carried out. From the simulation, the gas channel pitch of separator was the key factor to unify in-plane distribution of temperature and gas concentration on reaction surface in cell. The compression of GDL (gas diffusion layer) by cell binding caused wider distribution of mass concentration in GDL. From the experiment, the power generation performance was promoted with decreasing gas channel pitch. The temperature range in observation area was reduced with decreasing gas channel pitch. It can be concluded that the power generation performance is promoted by decreasing gas channel pitch.展开更多
文摘This study is to understand the impact of operating conditions, especially initial operation temperature (T<sub>ini</sub>) which is set in a high temperature range, on the temperature profile of the interface between the polymer electrolyte membrane (PEM) and the catalyst layer at the cathode (i.e., the reaction surface) in a single cell of polymer electrolyte fuel cell (PEFC). A 1D multi-plate heat transfer model based on the temperature data of the separator measured using the thermograph in a power generation experiment was developed to evaluate the reaction surface temperature (T<sub>react</sub>). In addition, to validate the proposed heat transfer model, T<sub>react</sub> obtained from the model was compared with that from the 3D numerical simulation using CFD software COMSOL Multiphysics which solves the continuity equation, Brinkman equation, Maxwell-Stefan equation, Butler-Volmer equation as well as heat transfer equation. As a result, the temperature gap between the results obtained by 1D heat transfer model and those obtained by 3D numerical simulation is below approximately 0.5 K. The simulation results show the change in the molar concentration of O<sub>2</sub> and H<sub>2</sub>O from the inlet to the outlet is more even with the increase in T<sub>ini</sub> due to the lower performance of O<sub>2</sub> reduction reaction. The change in the current density from the inlet to the outlet is more even with the increase in T<sub>ini</sub> and the value of current density is smaller with the increase in T<sub>ini </sub>due to the increase in ohmic over-potential and concentration over-potential. It is revealed that the change in T<sub>react</sub> from the inlet to the outlet is more even with the increase in T<sub>ini</sub> irrespective of heat transfer model. This is because the generated heat from the power generation is lower with the increase in T<sub>ini </sub>due to the lower performance of O<sub>2</sub> reduction reaction.
文摘本刊讯 近日,亚太森博(山东)浆纸有限公司收到了由sGs(通标标准技术服务有限公司)颁发的PEFC-C0c产销监管链认证证书,认证标准为PEFC ST 2002:2013 Chain of Custody of Forest Based Products-Requirements,认证范围包括木浆和白卡纸板的生产和销售。
基金This work is supported by Mie Prefecture IndustrialResearch Institute and the authors gratefullyacknowledge.
文摘According to the New Energy and Industry Technology Development Organization(NEDO)road map 2017 of Japan,polymer electrolyte fuel cell(PEFC)system is required to be operated at 90°C and 100°C for stationary and mobility applications,respectively.However,the general PEFC,which has Nafion membrane is operated within the temperature range between 60°C and 80°C.It is important to understand the temperature distribution in a PEFC cell for analyzing performance on working life span of PEFC.This study focuses on the combination of thin polymer electrolyte membrane(PEM)and thin gas diffusion layer(GDL)to improve power generation performance under relatively higher temperature operation conditions.In addition,this study also focuses on effect of micro porous layer(MPL),which can promote the mass transfer,over temperature distribution.The key aim of this study is to analyze impact of MPL of temperature distribution on the reaction surface(Treact)of a cell of PEFC using thin PEM and GDL with variations of H2 and O2 supply flow rates and their relative humidity(RH)with changing the initial operating temperature(Tini)from 80°C to 100°C.As a result,the distribution of Treact without MPL,for anode and cathode at 80%RH and Tini at 80°C and 90°C,is higher than normal conditions.There is a small difference in temperature distribution among different RH conditions with MPL.The distributions of Treact are relatively flat and almost the same among different RH conditions without MPL at Tini=100°C,while the distributions of Treact with MPL are almost the same among different RH conditions.This study is revealed that more even temperature distribution and higher power generation performance can be obtained in the case without MPL compared to the case with MPL.
基金National High Technology Reseach & Development Program of High Temperature PEM Fuel Cell,China (863 Program,No. 2008AA050403)Shanghai Pujiang Talent Plan,China (No. 08PJ1409)Chinese 111-Program for Energy-Saving and Environment-Friendly Automotives (No. B08019)
文摘Key words,: Two 1-D dynamical and isothermal models of cathode gas diffusion layer(GDL) with isobaric and non-isobaric operations for polymer electrolyte fuel cells(PEFCs) were developed and implemented in COMSOL Multiphysics v3.5.The artificial diffusion coefficient was introduced as well to make the numerical computation be stable.In the non-isobaric model,the pressure of gas mixture was obtained by summing up the governing equations of gaseous components,instead of Navier-Stoks equation.Comparison of the two models were carried out with the steady-states and dynamical simulations under given conditions.The corresponding analysis based on the simulated results was also given simultaneously.This paper is contributed to finding the differences between the isobaric and non-isobaric operation in the two-phase model of cathode GDL.
文摘This paper proposes an improved optimal operation planning method for residential PEFC-CGS (Polymer Electrolyte Fuel CellCo-Generation System). Residential PEFC-CGS has recently been gathering attention as one of the distributed power sources with high efficiency and low environmental impacts. Previous research pointed out that the output variations of PEFC adversely affect the durability. It can be surmised that smaller output variations will be desired to extend durability years. However, in this field, ramping rate have not been sufficiently considered. For local search and tabu search, ramping rate constraint makes our operation planning difficult because it restricts the search for feasible neighborhood solutions. Therefore, the authors proposed a method to deal with typical and harsher ramping rate constraints in comparison with conventional methods. There are two key points for the improvement. One is the reinforcement of the search along the output power axis;the other is to make use of the strategy of tabu search which avoids the local optimal solutions. The simulation results show the effectiveness of the proposed method in the daily operation planning. Furthermore, in the case using typical ramping rate parameter, it is confirmed that tabu search doesn’t contribute the reduction of daily operational cost due to the above stated restriction of the search area.
文摘Polymer Electrolyte Fuel Cell(PEFC)is required to be operated at temperature at 100℃ for fuel cell vehicle applications during the period from 2020 to 2025 in Japan.It is expected that micro porous layer(MPL)and thinner polymer electrolyte membrane(PEM)would enhance the power generation performance of PEFC at this temperature.The key objective of this study is to analyse the impact of MPL and thickness of PEM on the temperature distributions of interface between the PEM and catalyst layer at the cathode(i.e.,the reaction surface)in a single PEFC.A 1D multi-plate heat transfer model,considering vapor transfer,which is based on temperature data of separator measured using thermograph in power generation process.It is developed to evaluate temperature at the reaction surface.This study is investigated the effect of flow rate and relative humidity of supply gases on temperature distribution on reaction surface.The study reveals that the impact of flow rate of supply gas on temperature distribution on reaction surface is smaller with and without MPL.It is observed that the even temperature distribution on reaction surface as well as higher power generation performance can be obtained with MPL irrespective of thickness of PEM and relative humidity conditions.
文摘本刊讯(金东纸业 消息)近日,金东纸业顺利通过SGS公司对PEFC产销监管链的扩项审查,并取得了证书。本次审查严格按照新标准PEFC ST 2002:2010的要求执行,并增加了浆、纸贸易的认证范围。同时为了满足新标准要求,加强金东纸业PEFC产销监管链供应链的管理,从2011年7月份起对12家贸易公司进行辅导培训,帮助12家贸易公司全部通过PEFC产销监管链认证并取得证书。
文摘The purpose of this study is to point out the dominant factor of heat and mass distribution in single-cell PEFC (polymer electrolyte fuel cell). The numerical simulation by simple 3D model to clarify the influence of cell components structure on heat and mass transfer phenomena as well as power generation experiment and measurement of in-plane temperature distribution by thermograph was carried out. From the simulation, the gas channel pitch of separator was the key factor to unify in-plane distribution of temperature and gas concentration on reaction surface in cell. The compression of GDL (gas diffusion layer) by cell binding caused wider distribution of mass concentration in GDL. From the experiment, the power generation performance was promoted with decreasing gas channel pitch. The temperature range in observation area was reduced with decreasing gas channel pitch. It can be concluded that the power generation performance is promoted by decreasing gas channel pitch.