1 Introduction During the last decades the research has been devoted to the development of non-perfluorinated polymers[1,2], as an alternative to commercial perfluorosulphonic membranes. There are several non-perfluor...1 Introduction During the last decades the research has been devoted to the development of non-perfluorinated polymers[1,2], as an alternative to commercial perfluorosulphonic membranes. There are several non-perfluorinated materials suitable for these systems that should have as a fundamental requirement a good thermal stability of the original polymer. The studied polymers consist of polyaromatic or polyetherocyclic repeat units like polyetheretherketone (PEEK). Many papers have been published about t...展开更多
1 Results The phenomena that affect the membranes could be found in the electrodes when they operate at medium temperature,due to the utilisation of Nafion as an ionomer in the catalytic layer.An approach to improve t...1 Results The phenomena that affect the membranes could be found in the electrodes when they operate at medium temperature,due to the utilisation of Nafion as an ionomer in the catalytic layer.An approach to improve the mechanical properties of the ionomer in the catalytic layer was used: different inorganic compounds (zeolite,titania and zirconia),having different chemical-physical properties,were selected as inorganic fillers due to their water retention capacity and to act as mechanical reinforce by ...展开更多
This study is to understand the impact of operating conditions, especially initial operation temperature (T<sub>ini</sub>) which is set in a high temperature range, on the temperature profile of the interf...This study is to understand the impact of operating conditions, especially initial operation temperature (T<sub>ini</sub>) which is set in a high temperature range, on the temperature profile of the interface between the polymer electrolyte membrane (PEM) and the catalyst layer at the cathode (i.e., the reaction surface) in a single cell of polymer electrolyte fuel cell (PEFC). A 1D multi-plate heat transfer model based on the temperature data of the separator measured using the thermograph in a power generation experiment was developed to evaluate the reaction surface temperature (T<sub>react</sub>). In addition, to validate the proposed heat transfer model, T<sub>react</sub> obtained from the model was compared with that from the 3D numerical simulation using CFD software COMSOL Multiphysics which solves the continuity equation, Brinkman equation, Maxwell-Stefan equation, Butler-Volmer equation as well as heat transfer equation. As a result, the temperature gap between the results obtained by 1D heat transfer model and those obtained by 3D numerical simulation is below approximately 0.5 K. The simulation results show the change in the molar concentration of O<sub>2</sub> and H<sub>2</sub>O from the inlet to the outlet is more even with the increase in T<sub>ini</sub> due to the lower performance of O<sub>2</sub> reduction reaction. The change in the current density from the inlet to the outlet is more even with the increase in T<sub>ini</sub> and the value of current density is smaller with the increase in T<sub>ini </sub>due to the increase in ohmic over-potential and concentration over-potential. It is revealed that the change in T<sub>react</sub> from the inlet to the outlet is more even with the increase in T<sub>ini</sub> irrespective of heat transfer model. This is because the generated heat from the power generation is lower with the increase in T<sub>ini </sub>due to the lower performance of O<sub>2</sub> reduction reaction.展开更多
本刊讯 近日,亚太森博(山东)浆纸有限公司收到了由sGs(通标标准技术服务有限公司)颁发的PEFC-C0c产销监管链认证证书,认证标准为PEFC ST 2002:2013 Chain of Custody of Forest Based Products-Requirements,认证范围包括木浆和...本刊讯 近日,亚太森博(山东)浆纸有限公司收到了由sGs(通标标准技术服务有限公司)颁发的PEFC-C0c产销监管链认证证书,认证标准为PEFC ST 2002:2013 Chain of Custody of Forest Based Products-Requirements,认证范围包括木浆和白卡纸板的生产和销售。展开更多
In order to remove CO to achieve lower CO content of below 10 ppm in the CO removal step of reformer for polymer electrolyte fuel cell (PEFC) co-generation systems, CO preferential methanation under various conditio...In order to remove CO to achieve lower CO content of below 10 ppm in the CO removal step of reformer for polymer electrolyte fuel cell (PEFC) co-generation systems, CO preferential methanation under various conditions were studied in this paper. Results showed that, with a single kind of catalyst, it was difficult to reach both CO removal depth and CO2 conversion ratio of below 5%. Thus, a two-stage methanation process applying two kinds of catalysts is proposed in this study, that is, one kind of catalyst with relatively low activity and high selectivity for the first stage at higher temperature, and another kind of catalyst with relatively high activity and high selectivity for the second stage at lower temperature. Experimental results showed that at the first stage CO content was decreased from 1% to below 0.1% at 250-300 ℃, and at the second stage to below 10 ppm at 150-185 ℃. CO2 conversion was kept less than 5%, At the same time, influence of inlet CO content and GHSV on CO removal depth was also discussed in this paper.展开更多
Fuel cells and electrolysis are promising candidates for future energy production from renewable energy sources. Usually, polymer electrolyte fuel cell systems run on hydrogen and air, while the most of electrolysis s...Fuel cells and electrolysis are promising candidates for future energy production from renewable energy sources. Usually, polymer electrolyte fuel cell systems run on hydrogen and air, while the most of electrolysis systems vent out oxygen as unused by-product. Replacing air with pure oxygen, fuel cell electrochemical performance, durability and system efficiency can be significantly increased with a further overall system simplification and increased reliability. This work, which represents the initial step for pure H;/O;polymer electrolyte fuel cell operation in closed-loop systems, focuses on performance validation of a single cell operating with pure H;/O;under different relative humidity(RH) levels, reactants stoichiometry conditions and temperature. As a result of this study, the most convenient and appropriate operative conditions for a polymer electrolyte fuel cell stack integrated in a closed loop system were selected.展开更多
文摘1 Introduction During the last decades the research has been devoted to the development of non-perfluorinated polymers[1,2], as an alternative to commercial perfluorosulphonic membranes. There are several non-perfluorinated materials suitable for these systems that should have as a fundamental requirement a good thermal stability of the original polymer. The studied polymers consist of polyaromatic or polyetherocyclic repeat units like polyetheretherketone (PEEK). Many papers have been published about t...
文摘1 Results The phenomena that affect the membranes could be found in the electrodes when they operate at medium temperature,due to the utilisation of Nafion as an ionomer in the catalytic layer.An approach to improve the mechanical properties of the ionomer in the catalytic layer was used: different inorganic compounds (zeolite,titania and zirconia),having different chemical-physical properties,were selected as inorganic fillers due to their water retention capacity and to act as mechanical reinforce by ...
文摘This study is to understand the impact of operating conditions, especially initial operation temperature (T<sub>ini</sub>) which is set in a high temperature range, on the temperature profile of the interface between the polymer electrolyte membrane (PEM) and the catalyst layer at the cathode (i.e., the reaction surface) in a single cell of polymer electrolyte fuel cell (PEFC). A 1D multi-plate heat transfer model based on the temperature data of the separator measured using the thermograph in a power generation experiment was developed to evaluate the reaction surface temperature (T<sub>react</sub>). In addition, to validate the proposed heat transfer model, T<sub>react</sub> obtained from the model was compared with that from the 3D numerical simulation using CFD software COMSOL Multiphysics which solves the continuity equation, Brinkman equation, Maxwell-Stefan equation, Butler-Volmer equation as well as heat transfer equation. As a result, the temperature gap between the results obtained by 1D heat transfer model and those obtained by 3D numerical simulation is below approximately 0.5 K. The simulation results show the change in the molar concentration of O<sub>2</sub> and H<sub>2</sub>O from the inlet to the outlet is more even with the increase in T<sub>ini</sub> due to the lower performance of O<sub>2</sub> reduction reaction. The change in the current density from the inlet to the outlet is more even with the increase in T<sub>ini</sub> and the value of current density is smaller with the increase in T<sub>ini </sub>due to the increase in ohmic over-potential and concentration over-potential. It is revealed that the change in T<sub>react</sub> from the inlet to the outlet is more even with the increase in T<sub>ini</sub> irrespective of heat transfer model. This is because the generated heat from the power generation is lower with the increase in T<sub>ini </sub>due to the lower performance of O<sub>2</sub> reduction reaction.
文摘本刊讯 近日,亚太森博(山东)浆纸有限公司收到了由sGs(通标标准技术服务有限公司)颁发的PEFC-C0c产销监管链认证证书,认证标准为PEFC ST 2002:2013 Chain of Custody of Forest Based Products-Requirements,认证范围包括木浆和白卡纸板的生产和销售。
基金supported by Beijing Municipal Natural Science Foundation(NO.D0406001040111)in 2006 as major science and technology programNational Natural Science Foundation of China(NO.20776016)
文摘In order to remove CO to achieve lower CO content of below 10 ppm in the CO removal step of reformer for polymer electrolyte fuel cell (PEFC) co-generation systems, CO preferential methanation under various conditions were studied in this paper. Results showed that, with a single kind of catalyst, it was difficult to reach both CO removal depth and CO2 conversion ratio of below 5%. Thus, a two-stage methanation process applying two kinds of catalysts is proposed in this study, that is, one kind of catalyst with relatively low activity and high selectivity for the first stage at higher temperature, and another kind of catalyst with relatively high activity and high selectivity for the second stage at lower temperature. Experimental results showed that at the first stage CO content was decreased from 1% to below 0.1% at 250-300 ℃, and at the second stage to below 10 ppm at 150-185 ℃. CO2 conversion was kept less than 5%, At the same time, influence of inlet CO content and GHSV on CO removal depth was also discussed in this paper.
文摘Fuel cells and electrolysis are promising candidates for future energy production from renewable energy sources. Usually, polymer electrolyte fuel cell systems run on hydrogen and air, while the most of electrolysis systems vent out oxygen as unused by-product. Replacing air with pure oxygen, fuel cell electrochemical performance, durability and system efficiency can be significantly increased with a further overall system simplification and increased reliability. This work, which represents the initial step for pure H;/O;polymer electrolyte fuel cell operation in closed-loop systems, focuses on performance validation of a single cell operating with pure H;/O;under different relative humidity(RH) levels, reactants stoichiometry conditions and temperature. As a result of this study, the most convenient and appropriate operative conditions for a polymer electrolyte fuel cell stack integrated in a closed loop system were selected.