To assess the merits of PEGylated poly (lactic-co-glycolic acid) (PEG-PLGA) nanoparticles as drug carriers for tumor necrosis factor-α receptor blocking peptide (TNFR-BP), PEG-PLGA copolymer, which could be use...To assess the merits of PEGylated poly (lactic-co-glycolic acid) (PEG-PLGA) nanoparticles as drug carriers for tumor necrosis factor-α receptor blocking peptide (TNFR-BP), PEG-PLGA copolymer, which could be used to prepare the stealth nanoparticles, was synthesized with methoxypolyethyleneglycol, DL-lactide and glycolide. The structure of PEG-PLGA was confirmed with ^1H-NMR and FT-IR spectroscopy, and the molecular weight (MW) was determined by gel permeation chromatography. Fluorescent FITC-TNFR- BP was chosen as model protein and encapsulated within PEG-PLGA nanoparticles using the double emulsion method. Atomic force microscopy and photon correlation spectroscopy were employed to characterize the stealth nanoparticles fabricated for morphology, size with polydispersity index and zeta potential. Encapsulation efficiency (EE) and the release of FITC-TNFR-BP in nanopartieles in vitro were measured by the fluorescence measurement. The stealth nanoparticles were found to have the mean diameter less than 270 nm and zeta potential less than -20 mV. In all nanoparticle formulations, more than 45% of EE were obtained. FITC-TNFR-BP release from the PEG-PLGA nanoparticles exhibited a biphasic pattern, initial burst release and consequently sustained release. The experimental results show that PEG-PLGA nanoparticles possess the potential to develop as drug carriers for controlled release applications of TNFR-BP.展开更多
Objective To prepare the PEG-PLGA nanoparticles loaded with vincristine sulfate(VCR-loaded PEG-PLGA-NPs) and evaluate their quality.Methods VCR-loaded PEG-PLGA-NPs were prepared by the double emulsion solvent evaporat...Objective To prepare the PEG-PLGA nanoparticles loaded with vincristine sulfate(VCR-loaded PEG-PLGA-NPs) and evaluate their quality.Methods VCR-loaded PEG-PLGA-NPs were prepared by the double emulsion solvent evaporation method.The main experimental factors,which influenced the physical and chemical properties of the nanoparticles,were investigated and optimized.Results Under optimal conditions,the VCR-loaded PEG-PLGA-NPs had an average diameter of 135.9 nm with narrow size distribution.The encapsulation efficiency was 68.2%,while the drug loading capacity was 8.34%.In vitro,VCR was released from the PEG-PLGA-NPs sustainedly for more than 13 days with the total amount of 81%.Moreover,the VCR-loaded PEG-PLGA-NPs were relatively stable,which was confirmed by the stability testing.Conclusion The VCR-loaded PEG-PLGA-NPs are a promising nano drug with controlled release,which can be applied widely.展开更多
A PEGylated-PLGA random nanofibrous membrane loaded with gold and iron oxide nanoparticles and with silibinin was prepared by electrospinning deposition. The nanofibrous membrane can be remotely controlled and activat...A PEGylated-PLGA random nanofibrous membrane loaded with gold and iron oxide nanoparticles and with silibinin was prepared by electrospinning deposition. The nanofibrous membrane can be remotely controlled and activated by a laser light or magnetic field to release biological agents on demand. The nanosystems were characterized using scanning electron microscopy, Fourier transform infrared spectroscopy, nuclear magnetic resonance spectroscopy, and thermogravimetric analyses. The drug loading efficiency and drug content percentages were determined by UV-vis optical absorption spectroscopy. The nanofibrous membrane irradiated by a relatively low-intensity laser or stimulated by a magnetic field showed sustained silibinin release for at least 60 h, without the burst effect. The proposed low-cost electrospinning procedure is capable of assembling, via a one-step procedure, a stimuli-responsive drug-loaded nanosystem with metallic nanoparticles to be externally activated for controlled drug delivery.展开更多
基金Funded by the National 863 Project of China (No. 2004AA215162)
文摘To assess the merits of PEGylated poly (lactic-co-glycolic acid) (PEG-PLGA) nanoparticles as drug carriers for tumor necrosis factor-α receptor blocking peptide (TNFR-BP), PEG-PLGA copolymer, which could be used to prepare the stealth nanoparticles, was synthesized with methoxypolyethyleneglycol, DL-lactide and glycolide. The structure of PEG-PLGA was confirmed with ^1H-NMR and FT-IR spectroscopy, and the molecular weight (MW) was determined by gel permeation chromatography. Fluorescent FITC-TNFR- BP was chosen as model protein and encapsulated within PEG-PLGA nanoparticles using the double emulsion method. Atomic force microscopy and photon correlation spectroscopy were employed to characterize the stealth nanoparticles fabricated for morphology, size with polydispersity index and zeta potential. Encapsulation efficiency (EE) and the release of FITC-TNFR-BP in nanopartieles in vitro were measured by the fluorescence measurement. The stealth nanoparticles were found to have the mean diameter less than 270 nm and zeta potential less than -20 mV. In all nanoparticle formulations, more than 45% of EE were obtained. FITC-TNFR-BP release from the PEG-PLGA nanoparticles exhibited a biphasic pattern, initial burst release and consequently sustained release. The experimental results show that PEG-PLGA nanoparticles possess the potential to develop as drug carriers for controlled release applications of TNFR-BP.
基金the National 863 Hi-tech Project for financial support (2007AA021803, 2007AA021901)
文摘Objective To prepare the PEG-PLGA nanoparticles loaded with vincristine sulfate(VCR-loaded PEG-PLGA-NPs) and evaluate their quality.Methods VCR-loaded PEG-PLGA-NPs were prepared by the double emulsion solvent evaporation method.The main experimental factors,which influenced the physical and chemical properties of the nanoparticles,were investigated and optimized.Results Under optimal conditions,the VCR-loaded PEG-PLGA-NPs had an average diameter of 135.9 nm with narrow size distribution.The encapsulation efficiency was 68.2%,while the drug loading capacity was 8.34%.In vitro,VCR was released from the PEG-PLGA-NPs sustainedly for more than 13 days with the total amount of 81%.Moreover,the VCR-loaded PEG-PLGA-NPs were relatively stable,which was confirmed by the stability testing.Conclusion The VCR-loaded PEG-PLGA-NPs are a promising nano drug with controlled release,which can be applied widely.
文摘A PEGylated-PLGA random nanofibrous membrane loaded with gold and iron oxide nanoparticles and with silibinin was prepared by electrospinning deposition. The nanofibrous membrane can be remotely controlled and activated by a laser light or magnetic field to release biological agents on demand. The nanosystems were characterized using scanning electron microscopy, Fourier transform infrared spectroscopy, nuclear magnetic resonance spectroscopy, and thermogravimetric analyses. The drug loading efficiency and drug content percentages were determined by UV-vis optical absorption spectroscopy. The nanofibrous membrane irradiated by a relatively low-intensity laser or stimulated by a magnetic field showed sustained silibinin release for at least 60 h, without the burst effect. The proposed low-cost electrospinning procedure is capable of assembling, via a one-step procedure, a stimuli-responsive drug-loaded nanosystem with metallic nanoparticles to be externally activated for controlled drug delivery.