Structures and properties of the blends of thermotropic liquid crystallinepolymer(LC70)and poly(ethylene terephthalate) (PET) were investigated by usingWAXD,DSC,SEM and mechanical test.The results revealed that Wc,x m...Structures and properties of the blends of thermotropic liquid crystallinepolymer(LC70)and poly(ethylene terephthalate) (PET) were investigated by usingWAXD,DSC,SEM and mechanical test.The results revealed that Wc,x markdly decreased withLC70/PET>30%,and at about LC70/PET=10%, this blend can yield better mechanicalproperties.In these blends LC70 can play the role of the nuclear agent for PET.SEMphoto showed that LC70/PET in in-situ composites possessed 'core-shell' structure andwas immiscible, but at LC70/PST=10%, the LC70 can be uniformly dispersed into matrix PET.展开更多
The focus of this experiment was to compare the treatment performance of nutrient and microbial reduction in granite (GR), shredded polyethylene terephthalate (SP) and palm kernel shell (PKS) composites after so...The focus of this experiment was to compare the treatment performance of nutrient and microbial reduction in granite (GR), shredded polyethylene terephthalate (SP) and palm kernel shell (PKS) composites after solid/liquid separation of blackwater. Laboratory tests were conducted on replicated specimens of the GR, SP, and PKS pervious composites and the mechanisms of microbial reductions and nutrient transformation in blackwater treatment investigated after filtration. Six cylindrical specimens measuring 1 l0 mm x 100 mm and made from the GR, SP, and PKS were used to determine the physical and hydrologic properties (density and permeability) of the specimens. Additional six pervious specimens measuring 0.3 m x 0.3 m ~ 0.05 mm were used for the solid/liquid separation of blackwater. Blackwater was first infiltrated through a layer of coir fibre and net lining and then run through each pervious composite specimen. Nutrient (ammonium, nitrate, nitrite, total nitrogen, and total phosphorus) and microbial (Escherichia coli and coliforms) analyses were conducted on the effluent from the specimens and compared. The GR, SP, and PKS particle sizes were seen to be uniformly graded and similar. The composite specimens did not have significant effects on the nutrient transformations and removal of organic matter but for total phosphorus. However, escherichia coli and other coliforms's growth were limited in the SP. Hydrophobic interactions between the SP composite and microbial cells of the microbes could have promoted attachment and limited their growth. It was observed that the mean pH in the effluent filtered through the composites was higher than in the influent partly due to the availability of calcium carbonate in the cement. The study suggests that the SP composite is a promising alternative to the GR composite for the reduction of microbial constituents in blackwater vis-a-vis its light-weight compared to the other pervious composites.展开更多
The fabrication of raspberry-like poly(ethylene terephthalate)/polyacrylonitrile(PET/PAN) microspheres by g-ray radiation-induced polymerization of acrylonitrile on micron-sized PET microspheres were first reporte...The fabrication of raspberry-like poly(ethylene terephthalate)/polyacrylonitrile(PET/PAN) microspheres by g-ray radiation-induced polymerization of acrylonitrile on micron-sized PET microspheres were first reported in this work. A PET emulsion was firstly prepared by dispersing a PET solution with 1,1,2,2-tetrachloroethane/phenol mixture as the solvent into an aqueous solution of sodium dodecyl sulfate.Then, PET microspheres were formed by precipitating the PET emulsion droplets from ethanol. The influence of the PET solvent and the weight ratio of ethanol to PET emulsion on the morphology of the PET microspheres had been investigated. After the surface of the prepared PET microspheres was grafted with poly(acrylic acid), the grafting polymerization of AN also had been successfully initiated by g-ray radiation to form PAN microspheres with a size of about 100 nm on the PET microspheres. This work provides a new method to fabricate micron-sized PET microspheres, and further expands the functionalization of PET and its application fields.展开更多
文摘Structures and properties of the blends of thermotropic liquid crystallinepolymer(LC70)and poly(ethylene terephthalate) (PET) were investigated by usingWAXD,DSC,SEM and mechanical test.The results revealed that Wc,x markdly decreased withLC70/PET>30%,and at about LC70/PET=10%, this blend can yield better mechanicalproperties.In these blends LC70 can play the role of the nuclear agent for PET.SEMphoto showed that LC70/PET in in-situ composites possessed 'core-shell' structure andwas immiscible, but at LC70/PST=10%, the LC70 can be uniformly dispersed into matrix PET.
文摘The focus of this experiment was to compare the treatment performance of nutrient and microbial reduction in granite (GR), shredded polyethylene terephthalate (SP) and palm kernel shell (PKS) composites after solid/liquid separation of blackwater. Laboratory tests were conducted on replicated specimens of the GR, SP, and PKS pervious composites and the mechanisms of microbial reductions and nutrient transformation in blackwater treatment investigated after filtration. Six cylindrical specimens measuring 1 l0 mm x 100 mm and made from the GR, SP, and PKS were used to determine the physical and hydrologic properties (density and permeability) of the specimens. Additional six pervious specimens measuring 0.3 m x 0.3 m ~ 0.05 mm were used for the solid/liquid separation of blackwater. Blackwater was first infiltrated through a layer of coir fibre and net lining and then run through each pervious composite specimen. Nutrient (ammonium, nitrate, nitrite, total nitrogen, and total phosphorus) and microbial (Escherichia coli and coliforms) analyses were conducted on the effluent from the specimens and compared. The GR, SP, and PKS particle sizes were seen to be uniformly graded and similar. The composite specimens did not have significant effects on the nutrient transformations and removal of organic matter but for total phosphorus. However, escherichia coli and other coliforms's growth were limited in the SP. Hydrophobic interactions between the SP composite and microbial cells of the microbes could have promoted attachment and limited their growth. It was observed that the mean pH in the effluent filtered through the composites was higher than in the influent partly due to the availability of calcium carbonate in the cement. The study suggests that the SP composite is a promising alternative to the GR composite for the reduction of microbial constituents in blackwater vis-a-vis its light-weight compared to the other pervious composites.
基金the National Natural Science Foundation of China (Nos. 51573174, 51473172, 51173175, 51073146 and 51103143)Foshan Scientific and Technological Innovation Team Project (No. 2013IT100041)the Fundamental Research Funds for the Central Universities (Nos. WK2060200012 and WK3450000001)
文摘The fabrication of raspberry-like poly(ethylene terephthalate)/polyacrylonitrile(PET/PAN) microspheres by g-ray radiation-induced polymerization of acrylonitrile on micron-sized PET microspheres were first reported in this work. A PET emulsion was firstly prepared by dispersing a PET solution with 1,1,2,2-tetrachloroethane/phenol mixture as the solvent into an aqueous solution of sodium dodecyl sulfate.Then, PET microspheres were formed by precipitating the PET emulsion droplets from ethanol. The influence of the PET solvent and the weight ratio of ethanol to PET emulsion on the morphology of the PET microspheres had been investigated. After the surface of the prepared PET microspheres was grafted with poly(acrylic acid), the grafting polymerization of AN also had been successfully initiated by g-ray radiation to form PAN microspheres with a size of about 100 nm on the PET microspheres. This work provides a new method to fabricate micron-sized PET microspheres, and further expands the functionalization of PET and its application fields.