Recently, the industry and productions have been rapidly developed by the advancement of science and technology. On the other hand, the dwindling natural resources and the global warming increasingly pose a severe pro...Recently, the industry and productions have been rapidly developed by the advancement of science and technology. On the other hand, the dwindling natural resources and the global warming increasingly pose a severe problem to our life in near future. Indeed, solar photovoltaic (PV) has been attractive as one of the alternative energy resource to oil. However, some problems such as the reduction of electromotive force and the degradation of back-sheet influence the properties of the long-term life of the PV panel system. In this research, we used the high- and low-molecular-weight PET film in order to evaluate the effect of molecular weight for the hydrolysis of PET under the acceleration degradation test. As results, the mechanical properties of PET film were decreased with increasing the acceleration degradation time. In addition, it was found that the dielectric breakdown strength of PET film indicated the similar tendency with the mechanical properties. Accordingly, the non-destructive analytical technique, i.e. the partial discharge measurement makes it easy to evaluate the degradation of PET film without any damage or cut out for the film.展开更多
文摘Recently, the industry and productions have been rapidly developed by the advancement of science and technology. On the other hand, the dwindling natural resources and the global warming increasingly pose a severe problem to our life in near future. Indeed, solar photovoltaic (PV) has been attractive as one of the alternative energy resource to oil. However, some problems such as the reduction of electromotive force and the degradation of back-sheet influence the properties of the long-term life of the PV panel system. In this research, we used the high- and low-molecular-weight PET film in order to evaluate the effect of molecular weight for the hydrolysis of PET under the acceleration degradation test. As results, the mechanical properties of PET film were decreased with increasing the acceleration degradation time. In addition, it was found that the dielectric breakdown strength of PET film indicated the similar tendency with the mechanical properties. Accordingly, the non-destructive analytical technique, i.e. the partial discharge measurement makes it easy to evaluate the degradation of PET film without any damage or cut out for the film.