The uniform transparent TiO2/SiO2 photocatalytic composite thin films are prepared by sol-gel method on the soda lime glass substrates, and characterized by UV-visible spectroscopy, X-ray diffraction (XRD), transmissi...The uniform transparent TiO2/SiO2 photocatalytic composite thin films are prepared by sol-gel method on the soda lime glass substrates, and characterized by UV-visible spectroscopy, X-ray diffraction (XRD), transmission electron microscopy (TEM), BET surface area, FTIR spectroscopy and X-ray photoelectron spectroscopy (XPS). It was found that the addition of SiO2 to TiO2 thin films can suppress the grain growth of TiO2 crystal, increase the hydroxyl content on the surface of TiO2 films, lower the contact angle for water on TiO, films and enhance the hydrophilic property of TiO2 films. The super-hydrophilic TiO2/SiO2 photocatalytic composite thin films with the contact angle of 0((o) under bar) are obtained by the addition of 10%-20% SiO2 in mole fraction.展开更多
In this work,a sponge-like polysulfonamide(PSA)/SiO_2 composite membrane is unprecedentedly prepared by the phase inversion method,and successfully demonstrated as a novel separator of lithium-ion batteries(LIBs).Comp...In this work,a sponge-like polysulfonamide(PSA)/SiO_2 composite membrane is unprecedentedly prepared by the phase inversion method,and successfully demonstrated as a novel separator of lithium-ion batteries(LIBs).Compared to the commercial polypropylene(PP) separator,the sponge-like PSA/SiO_2 composite possesses better physical and electrochemical properties,such as higher porosity,ionic conductivity,thermal stability and flame retarding ability.The LiCoO_2/Li half-cells using the sponge-like composite separator demonstrate superior rate capability and cyclability over those using the commercial PP separator.Moreover,the sponge-like composite separator can ensure the normal operation of LiCoO_2/Li half-cell at an extremely high temperature of 90 °C,while the commercial PP separator cannot.All these encouraging results suggest that this phase inversion based sponge-like PSA/SiO_2 composite separator is really a promising separator for high performance LIBs.展开更多
Hollow B–SiO2@TiO2 composites were prepared by the wet chemical deposition method starting from TiCl4 and hollow B–SiO2 microspheres.TiO2 layers composed of anatase TiO2 nanoparticles were coated on the surfaces of ...Hollow B–SiO2@TiO2 composites were prepared by the wet chemical deposition method starting from TiCl4 and hollow B–SiO2 microspheres.TiO2 layers composed of anatase TiO2 nanoparticles were coated on the surfaces of the hollow B–SiO2 microspheres probably through the formation of Ti—O—Si and Ti—O—B bonds.A great number of—OH groups were also present at the TiO2 coating layers.The presence of Ti—O—Si bonds and Ti—O—B bonds resulted in the formation of defects in the TiO2 coating layers,which decreased the band gap of the TiO2 coating layers to ca.3.0 eV and endowed the TiO2 coating layers with visible light absorption performance.The buoyancy hollow B–SiO2@TiO2 composites exhibited high photocatalytic activities for the degradation of ammonia-nitrogen and green algae.The conversion of ammonia-nitrogen reached 65%when the degradation of ammonia-nitrogen(43 mg·L-1 at pH value of 8)was catalyzed by the B–SiO2@TiO2(100:10)composite under the simulated solar light irradiation at 35°C for 660 min.The green algae(5 mg·L-1)were almost completely degraded over the B–SiO@TiO2(100:20)photocatalyst under the visible light irradiation at 35°C for 510 min.展开更多
Supermacroporous composite cryogels embedded with SiO2 nanoparticles were prepared by radical cryogenic copolymerization of the reactive monomer mixture of acrylamide(AAm) and N,N-methylene-bis-acrylamide(MBAAm) c...Supermacroporous composite cryogels embedded with SiO2 nanoparticles were prepared by radical cryogenic copolymerization of the reactive monomer mixture of acrylamide(AAm) and N,N-methylene-bis-acrylamide(MBAAm) containing SiO2 nanoparticles(mass ratios of nanoparticles to the monomer AAm from 0.01 to 0.08) under the freezing-temperature variation condition in glass columns.The properties of these composite cryogels were measured.The height equivalent to theoretical plate(HETP) of the cryogel beds at different liquid flow rates was determined by residence time distribution(RTD) using tracer pulse-response method.The composite cryogel matrix embedded with the mass fraction of SiO2 nanoparticles of 0.02 presented the best properties and was employed in the following graft polymerization.Chromatographic process of lysozyme in the composite cryogel grafted with 2-acrylamido-2-methyl-1-propanesulfonic acid(AMPSA) was carried out to evaluate the protein breakthrough and elution characteristics.The chromatography can be carried out at relatively high superficial velocity,i.e.,15 cm·min-1,indicating the satisfactory mechanical strength due to the embedded nanoparticles.展开更多
(PEO)8LiClO4-SiO2 composite polymer electrolytes(CPEs)were prepared by in-situ reaction,in which ethyl-orthosilicate(TEOS)was catalyzed by HCl and NH3.H2O,respectively.The ionic conductivity,the contact angle and the ...(PEO)8LiClO4-SiO2 composite polymer electrolytes(CPEs)were prepared by in-situ reaction,in which ethyl-orthosilicate(TEOS)was catalyzed by HCl and NH3.H2O,respectively.The ionic conductivity,the contact angle and the morphology of inorganic particles in the CPEs were investigated by AC impedance spectra,contact angle method and TEM.The conductivities of acid-catalyzed CPE and alkali-catalyzed CPE are 2.2×10-5and 1.1×10-5S/cm respectively at 30℃.The results imply that the catalyst plays an important role in the structure of in-situ preparation of SiO2,and influences the surface energy and conductivity of CPE films directly.Meanwhile,the ionic conductivity is related to the surface energy.展开更多
A silicon dioxide fiber-reinforced silicon nitride matrix (SiOJSi3N4) composite used for radomes was prepared by chemical vapor infiltration (CVI) process using the SiCl4-NH3-H2 system. The effects of the process ...A silicon dioxide fiber-reinforced silicon nitride matrix (SiOJSi3N4) composite used for radomes was prepared by chemical vapor infiltration (CVI) process using the SiCl4-NH3-H2 system. The effects of the process conditions, including infiltration temperature, infiltration time, and gas flux were investigated. The energy dispersion spectra (EDS) result showed that the main elements of this composite contained Si, N, and O. The X-ray diffraction (XRD) results indicated that phases of the composite before and after treatment at 1350℃ were all amorphous. A little fiber pull-out was observed on the cross section of the composite by scan electron microscope (SEM). As a result, the composite exhibited good thermal stability, but an appropriate interface was necessary between the fiber and the matrix.展开更多
Total dose effects and single event effects on radiation-hardened power vertical double-diffusion metal oxide semiconductor(VDMOS) devices with composite SiO2-Si3N4 film gates are investigated.The relationships amon...Total dose effects and single event effects on radiation-hardened power vertical double-diffusion metal oxide semiconductor(VDMOS) devices with composite SiO2-Si3N4 film gates are investigated.The relationships among the important electrical parameters of the samples with different thickness SiO2-Si3N4 films,such as threshold voltage,breakdown voltage,and on-state resistance in accumulated dose,are discussed.The total dose experiment results show that the breakdown voltage and the on-state resistance barely change with the accumulated dose.However,the relationships between the threshold voltages of the samples and the accumulated dose are more complex,and not only positively drift,but also negatively drift.At the end of the total dose experiment,we select the group of samples which have the smaller threshold voltage shift to carry out the single event effect studies.We find that the samples with appropriate thickness ratio SiO2-Si3N4 films have a good radiation-hardening ability.This method may be useful in solving both the SEGR and the total dose problems with the composite SiO2-Si3N4 films.展开更多
The micro/nano-scale indentation tests were performed to explore the performance of bisphenol-α-glycidyl methacrylate (Bis-GMA)/triethylene glycol dimethacrylate (TEGDMA) dental resin composites. The effect of the fi...The micro/nano-scale indentation tests were performed to explore the performance of bisphenol-α-glycidyl methacrylate (Bis-GMA)/triethylene glycol dimethacrylate (TEGDMA) dental resin composites. The effect of the filling content of nano-SiO2 particles on the mechanical properties of the dental composites was studied as well. The experimental results showed that the incorporation of the nano-SiO2 particles at low concentrations (up to 10 wt.%) can apparently increase the hardness and elastic modulus of the dental rein composites. The plasticity index indicates a best elastic recovery capability at a proper amount (4 wt.%) of the nanoparticles. Combined with the infrared spectrum, the mechanical enhancement mechanisms of the dental resin composites were analyzed.展开更多
Three-dimensional (3D) five-directional braided (SiO2)/SiO2 composites were prepared by silicasol-infiltration-sintering (SIS) method. The flexural properties and microstructures were studied. The flexural stren...Three-dimensional (3D) five-directional braided (SiO2)/SiO2 composites were prepared by silicasol-infiltration-sintering (SIS) method. The flexural properties and microstructures were studied. The flexural strength and flexural elastic modulus were found to be 73 MPa and 12 GPa, respectively. The results of stress vs deflection curve and SEM examinations revealed that the fracture mechanism of 3D, five-directional braided (SiO2)/SiO2 composite was a mixture mode of ductile and brittle. The ductile mode was attributed to the weak bonding strength of fiber/matrix at low temperature. The brittle fracture might be caused by the propagation of micro defect or crack, which existed in the as-prepared composites for the ten-cycle process.展开更多
The n-SiO2/Ni composite electro-brush plating coating was prepared on the 1045 steel substrate. SEM and TEM were utilized to analyze the surface and cross-section morphologies or the microstructures of the composite c...The n-SiO2/Ni composite electro-brush plating coating was prepared on the 1045 steel substrate. SEM and TEM were utilized to analyze the surface and cross-section morphologies or the microstructures of the composite coating before and after heat treatment, as well as a micro-hardness tester was used to measure the micro-hardness before and after heat treatment. The results show that the entrance of nano SiO2 particles into composite coating makes the micro-hardness higher. After heat treatment, due to the obstruction to growth of Ni crystals from nano particles, the composite coating still possesses a higher micro-hardness than that of common Ni-base coating.展开更多
Ablation under oxyacetylene torch with heat flux of 4186.8(10%kW/m2 for 20 s was performed to evaluate the ablation resistance of C/C-SiC composites fabricated by chemical vapor infiltration(CVI) combined with liqu...Ablation under oxyacetylene torch with heat flux of 4186.8(10%kW/m2 for 20 s was performed to evaluate the ablation resistance of C/C-SiC composites fabricated by chemical vapor infiltration(CVI) combined with liquid silicon infiltration(LSI) process.The results indicated that C/C-SiC composites present a better ablation resistance than C/C composites without doped SiC.The doped SiC and the ablation products SiO2 derived from it play key roles in ablation process.Bulk quantities of SiO2 nanowires with diameter of 80 nm-150 nm and length of tens microns were observed on the surface of specimens after ablation.The growth mechanism of the SiO_2 nanowires was interpreted with a developed vapor-liquid-solid(VLS) driven by the temperature gradient.展开更多
Silica( SiO_2) based aerogel/xerogel materials have been received ever-growing attentions for versatile applications. However,the widespread applications are narrowed by the inert properties,fragile and brittle nature...Silica( SiO_2) based aerogel/xerogel materials have been received ever-growing attentions for versatile applications. However,the widespread applications are narrowed by the inert properties,fragile and brittle natureof silica materials and cumbersome preparation processes. In this paper,titania( TiO_2) was introduced into SiO_2 matrix to form photocatalytic hybrid gels. The TiO_2/SiO_2 composites were then reinforced by the impregnation of various fibrillary reinforcements,such as glass,mullite mineral and ceramic fibers. The properties of the composites were studied systematically in terms of fiberstability,microstructure,chemical interaction and thermal conductivity. The final xerogel composites displayed improved monolithic geometry,satisfied thermal conductivity(0. 09-0. 25 W·m^(-1)·K^(-1)) and optimized photocatalytic performance(85% removal of model pollutant of methyl orange( Mo)),which could be expected to be a feasible route to multi-functional building facades in the future.展开更多
Al 2O 3-SiO 2-TiO 2-ZrO 2 supported membranes were prepar ed by Sol-Gel method. These composite ceramic membranes are level, even and no macro crack. There exist several crystalline phases such as Al 2O 3, TiO...Al 2O 3-SiO 2-TiO 2-ZrO 2 supported membranes were prepar ed by Sol-Gel method. These composite ceramic membranes are level, even and no macro crack. There exist several crystalline phases such as Al 2O 3, TiO 2(a natase), Al 2SiO 5, and ZrO 2 in these membranes. Changing the molar ratio of Al∶Si∶Ti∶Zr,the kinds and content of crystal phases of composite membranes could be different, which may lead to a variety of microstructure of membranes. The surface nanoscale topography and microstructure of membranes were investiga ted by XRD,SEM,AFM,EPMA. The effects of additives and heat treatments on the sur face nanoscale topography and microstructure of composite ceramic membranes were also analyzed.展开更多
[Zn(CH3COO)2 + PVP]/[C2H5O)4Si + PVP]/[SnCl4 + PVP]/[Ti(OC4H9)4 + CH3COOH + PVP] precursor composite fibers have been fabricated through self-made electrospinning equipment via electrospinning tech-nique. ZnO/SiO2/SnO...[Zn(CH3COO)2 + PVP]/[C2H5O)4Si + PVP]/[SnCl4 + PVP]/[Ti(OC4H9)4 + CH3COOH + PVP] precursor composite fibers have been fabricated through self-made electrospinning equipment via electrospinning tech-nique. ZnO/SiO2/SnO2/TiO2 composite nanofibers were obtained by calcination of the relevant precursor composite fibers. The samples were characterized by thermogravimetric-differential thermal analysis (TG-DTA), X-ray diffractometry (XRD), Fourier transform infrared spectroscopy (FTIR), and Scanning electron microscopy (SEM). TG-DTA analysis reveals that solvents, organic compounds and inorganic in the precursor composite fibers are decomposed and volatilized totally, and the mass of the samples kept constant when sintering temperature was above 900?C, and the total mass loss percentage is 88%. XRD results show that the precursor composite fibers are amorphous in structure, and pure phase ZnO/SiO2/SnO2/TiO2 com-posite nanofibers are obtained by calcination of the relevant precursor composite fibers. FTIR analysis manifests that pure inorganic oxides are formed. SEM analysis indicates that the width of the precursor composite fibers is ca. 1.485 ± 0.043 μm. The width of the ZnO/SiO2/SnO2/TiO2 composite nanofibers is ca. 1145.098 ± 68.093 nm.展开更多
Gold nanorods (AuNRs/GNR) have unique, controllable and anisotropic local surface plasmon resonance (SPR) properties, which have been widely used in biochemistry, electronics and catalysis.<span style="font-fa...Gold nanorods (AuNRs/GNR) have unique, controllable and anisotropic local surface plasmon resonance (SPR) properties, which have been widely used in biochemistry, electronics and catalysis.<span style="font-family:Verdana;"> </span><span style="font-family:Verdana;">It is of great value and significance to study the synthesis, properties, surface modification and structural regulation of AuNRs.</span><span style="font-family:Verdana;"> </span><span style="font-family:;" "=""><span style="font-family:Verdana;">This paper introduces AuNRs and AuNRs@SiO</span><sub><span style="font-size:12px;font-family:Verdana;">2</span></sub><span style="font-family:Verdana;">. The synthesis of AuNRs@SiO</span><sub><span style="font-size:12px;font-family:Verdana;">2</span></sub><span style="font-family:Verdana;"> composite nanomaterials with quantum dots, graphene, rare earth materials and magnetic materials is described.</span></span><span style="font-family:Verdana;"> </span><span style="font-family:Verdana;">The applications of nanocomposites in optics, biomedicine and biosensors are also discussed. The future development of nanocomposites is proposed.</span>展开更多
基金This work was financially supported by the Foundation for University Key Teachers by the Ministry of Education, theKey Resear
文摘The uniform transparent TiO2/SiO2 photocatalytic composite thin films are prepared by sol-gel method on the soda lime glass substrates, and characterized by UV-visible spectroscopy, X-ray diffraction (XRD), transmission electron microscopy (TEM), BET surface area, FTIR spectroscopy and X-ray photoelectron spectroscopy (XPS). It was found that the addition of SiO2 to TiO2 thin films can suppress the grain growth of TiO2 crystal, increase the hydroxyl content on the surface of TiO2 films, lower the contact angle for water on TiO, films and enhance the hydrophilic property of TiO2 films. The super-hydrophilic TiO2/SiO2 photocatalytic composite thin films with the contact angle of 0((o) under bar) are obtained by the addition of 10%-20% SiO2 in mole fraction.
基金Supported by the funding from "135" Projects Fund of CAS-QIBEBT Director Innovation FoundationThink-Tank Mutual Fund of Qingdao Energy Storage Industry Scientific Research+3 种基金Qingdao Key Lab of Solar Energy Utilization and Energy Storage Technologythe Strategic Priority Research Program of the Chinese Academy of Sciences(XDA09010105)National Natural Science Foundation of China(51502319)Shandong Provincial Natural Science Foundation(ZR2016BQ18)
文摘In this work,a sponge-like polysulfonamide(PSA)/SiO_2 composite membrane is unprecedentedly prepared by the phase inversion method,and successfully demonstrated as a novel separator of lithium-ion batteries(LIBs).Compared to the commercial polypropylene(PP) separator,the sponge-like PSA/SiO_2 composite possesses better physical and electrochemical properties,such as higher porosity,ionic conductivity,thermal stability and flame retarding ability.The LiCoO_2/Li half-cells using the sponge-like composite separator demonstrate superior rate capability and cyclability over those using the commercial PP separator.Moreover,the sponge-like composite separator can ensure the normal operation of LiCoO_2/Li half-cell at an extremely high temperature of 90 °C,while the commercial PP separator cannot.All these encouraging results suggest that this phase inversion based sponge-like PSA/SiO_2 composite separator is really a promising separator for high performance LIBs.
基金Supported by the National Natural Science Foundation of China(21506078).
文摘Hollow B–SiO2@TiO2 composites were prepared by the wet chemical deposition method starting from TiCl4 and hollow B–SiO2 microspheres.TiO2 layers composed of anatase TiO2 nanoparticles were coated on the surfaces of the hollow B–SiO2 microspheres probably through the formation of Ti—O—Si and Ti—O—B bonds.A great number of—OH groups were also present at the TiO2 coating layers.The presence of Ti—O—Si bonds and Ti—O—B bonds resulted in the formation of defects in the TiO2 coating layers,which decreased the band gap of the TiO2 coating layers to ca.3.0 eV and endowed the TiO2 coating layers with visible light absorption performance.The buoyancy hollow B–SiO2@TiO2 composites exhibited high photocatalytic activities for the degradation of ammonia-nitrogen and green algae.The conversion of ammonia-nitrogen reached 65%when the degradation of ammonia-nitrogen(43 mg·L-1 at pH value of 8)was catalyzed by the B–SiO2@TiO2(100:10)composite under the simulated solar light irradiation at 35°C for 660 min.The green algae(5 mg·L-1)were almost completely degraded over the B–SiO@TiO2(100:20)photocatalyst under the visible light irradiation at 35°C for 510 min.
基金Supported by the National Natural Science Foundation of China(20876145) the Natural Science Foundation of Zhejiang Province(Y4080329)
文摘Supermacroporous composite cryogels embedded with SiO2 nanoparticles were prepared by radical cryogenic copolymerization of the reactive monomer mixture of acrylamide(AAm) and N,N-methylene-bis-acrylamide(MBAAm) containing SiO2 nanoparticles(mass ratios of nanoparticles to the monomer AAm from 0.01 to 0.08) under the freezing-temperature variation condition in glass columns.The properties of these composite cryogels were measured.The height equivalent to theoretical plate(HETP) of the cryogel beds at different liquid flow rates was determined by residence time distribution(RTD) using tracer pulse-response method.The composite cryogel matrix embedded with the mass fraction of SiO2 nanoparticles of 0.02 presented the best properties and was employed in the following graft polymerization.Chromatographic process of lysozyme in the composite cryogel grafted with 2-acrylamido-2-methyl-1-propanesulfonic acid(AMPSA) was carried out to evaluate the protein breakthrough and elution characteristics.The chromatography can be carried out at relatively high superficial velocity,i.e.,15 cm·min-1,indicating the satisfactory mechanical strength due to the embedded nanoparticles.
文摘(PEO)8LiClO4-SiO2 composite polymer electrolytes(CPEs)were prepared by in-situ reaction,in which ethyl-orthosilicate(TEOS)was catalyzed by HCl and NH3.H2O,respectively.The ionic conductivity,the contact angle and the morphology of inorganic particles in the CPEs were investigated by AC impedance spectra,contact angle method and TEM.The conductivities of acid-catalyzed CPE and alkali-catalyzed CPE are 2.2×10-5and 1.1×10-5S/cm respectively at 30℃.The results imply that the catalyst plays an important role in the structure of in-situ preparation of SiO2,and influences the surface energy and conductivity of CPE films directly.Meanwhile,the ionic conductivity is related to the surface energy.
基金This study was financially supported by the Key Foundation of National Science in China (No. 90405015), the National Elitist Youth Foundation of China (No. 50425208the Doctorate Foundation of Northwestern Polytechnical University (CX200505).
文摘A silicon dioxide fiber-reinforced silicon nitride matrix (SiOJSi3N4) composite used for radomes was prepared by chemical vapor infiltration (CVI) process using the SiCl4-NH3-H2 system. The effects of the process conditions, including infiltration temperature, infiltration time, and gas flux were investigated. The energy dispersion spectra (EDS) result showed that the main elements of this composite contained Si, N, and O. The X-ray diffraction (XRD) results indicated that phases of the composite before and after treatment at 1350℃ were all amorphous. A little fiber pull-out was observed on the cross section of the composite by scan electron microscope (SEM). As a result, the composite exhibited good thermal stability, but an appropriate interface was necessary between the fiber and the matrix.
文摘Total dose effects and single event effects on radiation-hardened power vertical double-diffusion metal oxide semiconductor(VDMOS) devices with composite SiO2-Si3N4 film gates are investigated.The relationships among the important electrical parameters of the samples with different thickness SiO2-Si3N4 films,such as threshold voltage,breakdown voltage,and on-state resistance in accumulated dose,are discussed.The total dose experiment results show that the breakdown voltage and the on-state resistance barely change with the accumulated dose.However,the relationships between the threshold voltages of the samples and the accumulated dose are more complex,and not only positively drift,but also negatively drift.At the end of the total dose experiment,we select the group of samples which have the smaller threshold voltage shift to carry out the single event effect studies.We find that the samples with appropriate thickness ratio SiO2-Si3N4 films have a good radiation-hardening ability.This method may be useful in solving both the SEGR and the total dose problems with the composite SiO2-Si3N4 films.
文摘The micro/nano-scale indentation tests were performed to explore the performance of bisphenol-α-glycidyl methacrylate (Bis-GMA)/triethylene glycol dimethacrylate (TEGDMA) dental resin composites. The effect of the filling content of nano-SiO2 particles on the mechanical properties of the dental composites was studied as well. The experimental results showed that the incorporation of the nano-SiO2 particles at low concentrations (up to 10 wt.%) can apparently increase the hardness and elastic modulus of the dental rein composites. The plasticity index indicates a best elastic recovery capability at a proper amount (4 wt.%) of the nanoparticles. Combined with the infrared spectrum, the mechanical enhancement mechanisms of the dental resin composites were analyzed.
基金Funded by the Basic Research Project of Science and Technology of Jiangsu Province(No.BK2009002)the National Natural ScienceFoundation of China(No.61176062)the Fundamental Research Funds for the Central Universities(No.NS2013061)
文摘Three-dimensional (3D) five-directional braided (SiO2)/SiO2 composites were prepared by silicasol-infiltration-sintering (SIS) method. The flexural properties and microstructures were studied. The flexural strength and flexural elastic modulus were found to be 73 MPa and 12 GPa, respectively. The results of stress vs deflection curve and SEM examinations revealed that the fracture mechanism of 3D, five-directional braided (SiO2)/SiO2 composite was a mixture mode of ductile and brittle. The ductile mode was attributed to the weak bonding strength of fiber/matrix at low temperature. The brittle fracture might be caused by the propagation of micro defect or crack, which existed in the as-prepared composites for the ten-cycle process.
基金Project(50235030) supported by the National Natural Science Foundation of China Project(G1999065009) supported by the National Basic Research Program of China Project(2003AA331130) supported by the Hi-tech Research and Development Program of China
文摘The n-SiO2/Ni composite electro-brush plating coating was prepared on the 1045 steel substrate. SEM and TEM were utilized to analyze the surface and cross-section morphologies or the microstructures of the composite coating before and after heat treatment, as well as a micro-hardness tester was used to measure the micro-hardness before and after heat treatment. The results show that the entrance of nano SiO2 particles into composite coating makes the micro-hardness higher. After heat treatment, due to the obstruction to growth of Ni crystals from nano particles, the composite coating still possesses a higher micro-hardness than that of common Ni-base coating.
基金supported by the Specialized Research Fund for the Doctoral Program of Higher Education of China(Grant No.20110006110025)the National Natural Science Foundation of China(Grant No.U1134102)
文摘Ablation under oxyacetylene torch with heat flux of 4186.8(10%kW/m2 for 20 s was performed to evaluate the ablation resistance of C/C-SiC composites fabricated by chemical vapor infiltration(CVI) combined with liquid silicon infiltration(LSI) process.The results indicated that C/C-SiC composites present a better ablation resistance than C/C composites without doped SiC.The doped SiC and the ablation products SiO2 derived from it play key roles in ablation process.Bulk quantities of SiO2 nanowires with diameter of 80 nm-150 nm and length of tens microns were observed on the surface of specimens after ablation.The growth mechanism of the SiO_2 nanowires was interpreted with a developed vapor-liquid-solid(VLS) driven by the temperature gradient.
基金National Natural Science Foundations of China(Nos.51308079,51408073,51678080,51678081)
文摘Silica( SiO_2) based aerogel/xerogel materials have been received ever-growing attentions for versatile applications. However,the widespread applications are narrowed by the inert properties,fragile and brittle natureof silica materials and cumbersome preparation processes. In this paper,titania( TiO_2) was introduced into SiO_2 matrix to form photocatalytic hybrid gels. The TiO_2/SiO_2 composites were then reinforced by the impregnation of various fibrillary reinforcements,such as glass,mullite mineral and ceramic fibers. The properties of the composites were studied systematically in terms of fiberstability,microstructure,chemical interaction and thermal conductivity. The final xerogel composites displayed improved monolithic geometry,satisfied thermal conductivity(0. 09-0. 25 W·m^(-1)·K^(-1)) and optimized photocatalytic performance(85% removal of model pollutant of methyl orange( Mo)),which could be expected to be a feasible route to multi-functional building facades in the future.
文摘Al 2O 3-SiO 2-TiO 2-ZrO 2 supported membranes were prepar ed by Sol-Gel method. These composite ceramic membranes are level, even and no macro crack. There exist several crystalline phases such as Al 2O 3, TiO 2(a natase), Al 2SiO 5, and ZrO 2 in these membranes. Changing the molar ratio of Al∶Si∶Ti∶Zr,the kinds and content of crystal phases of composite membranes could be different, which may lead to a variety of microstructure of membranes. The surface nanoscale topography and microstructure of membranes were investiga ted by XRD,SEM,AFM,EPMA. The effects of additives and heat treatments on the sur face nanoscale topography and microstructure of composite ceramic membranes were also analyzed.
文摘[Zn(CH3COO)2 + PVP]/[C2H5O)4Si + PVP]/[SnCl4 + PVP]/[Ti(OC4H9)4 + CH3COOH + PVP] precursor composite fibers have been fabricated through self-made electrospinning equipment via electrospinning tech-nique. ZnO/SiO2/SnO2/TiO2 composite nanofibers were obtained by calcination of the relevant precursor composite fibers. The samples were characterized by thermogravimetric-differential thermal analysis (TG-DTA), X-ray diffractometry (XRD), Fourier transform infrared spectroscopy (FTIR), and Scanning electron microscopy (SEM). TG-DTA analysis reveals that solvents, organic compounds and inorganic in the precursor composite fibers are decomposed and volatilized totally, and the mass of the samples kept constant when sintering temperature was above 900?C, and the total mass loss percentage is 88%. XRD results show that the precursor composite fibers are amorphous in structure, and pure phase ZnO/SiO2/SnO2/TiO2 com-posite nanofibers are obtained by calcination of the relevant precursor composite fibers. FTIR analysis manifests that pure inorganic oxides are formed. SEM analysis indicates that the width of the precursor composite fibers is ca. 1.485 ± 0.043 μm. The width of the ZnO/SiO2/SnO2/TiO2 composite nanofibers is ca. 1145.098 ± 68.093 nm.
文摘Gold nanorods (AuNRs/GNR) have unique, controllable and anisotropic local surface plasmon resonance (SPR) properties, which have been widely used in biochemistry, electronics and catalysis.<span style="font-family:Verdana;"> </span><span style="font-family:Verdana;">It is of great value and significance to study the synthesis, properties, surface modification and structural regulation of AuNRs.</span><span style="font-family:Verdana;"> </span><span style="font-family:;" "=""><span style="font-family:Verdana;">This paper introduces AuNRs and AuNRs@SiO</span><sub><span style="font-size:12px;font-family:Verdana;">2</span></sub><span style="font-family:Verdana;">. The synthesis of AuNRs@SiO</span><sub><span style="font-size:12px;font-family:Verdana;">2</span></sub><span style="font-family:Verdana;"> composite nanomaterials with quantum dots, graphene, rare earth materials and magnetic materials is described.</span></span><span style="font-family:Verdana;"> </span><span style="font-family:Verdana;">The applications of nanocomposites in optics, biomedicine and biosensors are also discussed. The future development of nanocomposites is proposed.</span>