针对纯方位目标跟踪(Bearing-Only Tracking,BOT)系统强非线性特点,提出一种新的解决方案:采用平方根中心差分卡尔曼滤波器(Square-RootCDKF,SRCDKF)产生粒子滤波提议分布,融入最新的观测数据影响;增加改进措施以提高滤波性能,如采用系...针对纯方位目标跟踪(Bearing-Only Tracking,BOT)系统强非线性特点,提出一种新的解决方案:采用平方根中心差分卡尔曼滤波器(Square-RootCDKF,SRCDKF)产生粒子滤波提议分布,融入最新的观测数据影响;增加改进措施以提高滤波性能,如采用系统重抽样算法减少方差、应用马尔可夫链模特卡罗(Markovchain Monte Carlo,MCMC)方法消除粒子贫乏等。仿真表明该算法是有效的,针对当前BOT系统,比传统EKF、PF算法可靠性更好,跟踪精度更高。展开更多
This paper improves the resampling step of particle filtering(PF) based on a broad interactive genetic algorithm to resolve particle degeneration and particle shortage.For target tracking in image processing,this pa...This paper improves the resampling step of particle filtering(PF) based on a broad interactive genetic algorithm to resolve particle degeneration and particle shortage.For target tracking in image processing,this paper uses the information coming from the particles of the previous fame image and new observation data to self-adaptively determine the selecting range of particles in current fame image.The improved selecting operator with jam gene is used to ensure the diversity of particles in mathematics,and the absolute arithmetical crossing operator whose feasible solution space being close about crossing operation,and non-uniform mutation operator is used to capture all kinds of mutation in this paper.The result of simulating experiment shows that the algorithm of this paper has better iterative estimating capability than extended Kalman filtering(EKF),PF,regularized partide filtering(RPF),and genetic algorithm(GA)-PF.展开更多
文摘针对纯方位目标跟踪(Bearing-Only Tracking,BOT)系统强非线性特点,提出一种新的解决方案:采用平方根中心差分卡尔曼滤波器(Square-RootCDKF,SRCDKF)产生粒子滤波提议分布,融入最新的观测数据影响;增加改进措施以提高滤波性能,如采用系统重抽样算法减少方差、应用马尔可夫链模特卡罗(Markovchain Monte Carlo,MCMC)方法消除粒子贫乏等。仿真表明该算法是有效的,针对当前BOT系统,比传统EKF、PF算法可靠性更好,跟踪精度更高。
基金supported by the National Natural Science Foundation of China(61302145)
文摘This paper improves the resampling step of particle filtering(PF) based on a broad interactive genetic algorithm to resolve particle degeneration and particle shortage.For target tracking in image processing,this paper uses the information coming from the particles of the previous fame image and new observation data to self-adaptively determine the selecting range of particles in current fame image.The improved selecting operator with jam gene is used to ensure the diversity of particles in mathematics,and the absolute arithmetical crossing operator whose feasible solution space being close about crossing operation,and non-uniform mutation operator is used to capture all kinds of mutation in this paper.The result of simulating experiment shows that the algorithm of this paper has better iterative estimating capability than extended Kalman filtering(EKF),PF,regularized partide filtering(RPF),and genetic algorithm(GA)-PF.