Introduction: Leukocyte and platelet-rich fibrin (L-PRF) is an emerging material in dentistry, however, there are controversies surrounding its effectiveness. Despite the amount of literature available, debates regard...Introduction: Leukocyte and platelet-rich fibrin (L-PRF) is an emerging material in dentistry, however, there are controversies surrounding its effectiveness. Despite the amount of literature available, debates regarding its effect continue. This review aims to summarize and clarify the data surrounding the use of L-PRF in promoting the healing of extraction sockets, which may offer a better outcome for future treatments. Purpose: The purpose of this review is to evaluate the current literature on the use of L-PRF in promoting the healing of extraction sockets, and to provide a comprehensive overview of the available evidence. Methods: A comprehensive computer-based search of databases such as PubMed, Medline, and Cochrane Library was conducted. Results: The results of this review suggest that L-PRF has shown promise in promoting early healing of extraction sockets, but the evidence for its effectiveness over a longer period is limited. Conclusion: Although L-PRF has shown promising results in the early healing periods, its effectiveness over a longer healing period cannot be confirmed based on the available data. More clinical trials with standardized protocols and consistent measurement methods are needed to establish the role of L-PRF in enhancing the healing of extraction sockets.展开更多
为明确并提升承插式拼装桥墩抵抗压弯扭等复合荷载的能力,提出了一种结合灌浆套筒和承插口组合连接的新型承插装配式墩,通过复合荷载作用下的拟静力试验对比了现浇(reinforced concrete,RC)、灌浆套筒(grouting and sleeve,GS)、承插口(...为明确并提升承插式拼装桥墩抵抗压弯扭等复合荷载的能力,提出了一种结合灌浆套筒和承插口组合连接的新型承插装配式墩,通过复合荷载作用下的拟静力试验对比了现浇(reinforced concrete,RC)、灌浆套筒(grouting and sleeve,GS)、承插口(socket with ultra-high performance concrete,SU)和结合套筒连接钢筋的新型承插(grouting sleeve and socket with ultra-high performance concrete,GSU)连接拼装桥墩的损伤机理和滞回性能,结合有限元模型重点讨论了承插口深度对滞回性能的影响。结果表明:4个构件的破坏模式都是以受弯破坏为主的弯扭破坏,其中SU构件出现了轻微拔起的现象,而对应的GSU构件并未出现该现象,与RC构件接近;各构件的剪力-墩顶位移骨架发展趋势比较一致,由于GSU构件纵向钢筋连续,具有更好的整体性能,其抗弯承载力与RC构件接近,且明显大于SU和GS构件,4个构件弯曲滞回耗能较为接近;承插口深度为1.0倍截面宽度的GSU构件抗扭承载力略高于RC构件,且明显大于其余装配式墩,GSU构件的扭转刚度、延性系数和耗能能力均大于其他3个墩;当承插口深度采用0.5倍构件截面宽度时,新型承插GSU构件的抗弯和抗扭承载力均略高于整体现浇构件,具有良好的抵抗压弯扭荷载的能力,可以实现浅承插口连接。研究结果可为压弯扭复合作用下装配式墩的应用提供试验依据。展开更多
文摘Introduction: Leukocyte and platelet-rich fibrin (L-PRF) is an emerging material in dentistry, however, there are controversies surrounding its effectiveness. Despite the amount of literature available, debates regarding its effect continue. This review aims to summarize and clarify the data surrounding the use of L-PRF in promoting the healing of extraction sockets, which may offer a better outcome for future treatments. Purpose: The purpose of this review is to evaluate the current literature on the use of L-PRF in promoting the healing of extraction sockets, and to provide a comprehensive overview of the available evidence. Methods: A comprehensive computer-based search of databases such as PubMed, Medline, and Cochrane Library was conducted. Results: The results of this review suggest that L-PRF has shown promise in promoting early healing of extraction sockets, but the evidence for its effectiveness over a longer period is limited. Conclusion: Although L-PRF has shown promising results in the early healing periods, its effectiveness over a longer healing period cannot be confirmed based on the available data. More clinical trials with standardized protocols and consistent measurement methods are needed to establish the role of L-PRF in enhancing the healing of extraction sockets.
文摘为明确并提升承插式拼装桥墩抵抗压弯扭等复合荷载的能力,提出了一种结合灌浆套筒和承插口组合连接的新型承插装配式墩,通过复合荷载作用下的拟静力试验对比了现浇(reinforced concrete,RC)、灌浆套筒(grouting and sleeve,GS)、承插口(socket with ultra-high performance concrete,SU)和结合套筒连接钢筋的新型承插(grouting sleeve and socket with ultra-high performance concrete,GSU)连接拼装桥墩的损伤机理和滞回性能,结合有限元模型重点讨论了承插口深度对滞回性能的影响。结果表明:4个构件的破坏模式都是以受弯破坏为主的弯扭破坏,其中SU构件出现了轻微拔起的现象,而对应的GSU构件并未出现该现象,与RC构件接近;各构件的剪力-墩顶位移骨架发展趋势比较一致,由于GSU构件纵向钢筋连续,具有更好的整体性能,其抗弯承载力与RC构件接近,且明显大于SU和GS构件,4个构件弯曲滞回耗能较为接近;承插口深度为1.0倍截面宽度的GSU构件抗扭承载力略高于RC构件,且明显大于其余装配式墩,GSU构件的扭转刚度、延性系数和耗能能力均大于其他3个墩;当承插口深度采用0.5倍构件截面宽度时,新型承插GSU构件的抗弯和抗扭承载力均略高于整体现浇构件,具有良好的抵抗压弯扭荷载的能力,可以实现浅承插口连接。研究结果可为压弯扭复合作用下装配式墩的应用提供试验依据。