During the last decade, phase-conjugation mirror (PCM) and phase-conjugation resonator (PCR) have interest to many authors in that they can be used to improve the quality of laser beams. For a laser using conventional...During the last decade, phase-conjugation mirror (PCM) and phase-conjugation resonator (PCR) have interest to many authors in that they can be used to improve the quality of laser beams. For a laser using conventional optical resontors, we展开更多
Based on the first part of this paper (Science in China, 33(1990), 982—995), further research has been done on quasi-equivalence relation and asymmetrical character of axisymmetrical phase-conjugatlon resonator(PCR)....Based on the first part of this paper (Science in China, 33(1990), 982—995), further research has been done on quasi-equivalence relation and asymmetrical character of axisymmetrical phase-conjugatlon resonator(PCR). A series of calculations for axisymmetrical PCR(hundreds of transverse modes in 66 axisymmetrical PCRs) have been carried out, and the results are compared with those of corresponding conventional laser resonators. Fundamental properties of the transverse modes (TEMs) in PCR are summarized. This makes possible a rough estimation of the properties of various TEMs in these simple PCR, including different geometrical structures.展开更多
The signal synchronization transmission of a spatiotemporal chaos network is investigated. The structure of the coupling function between connected nodes of the complex network and the value range of the linear term c...The signal synchronization transmission of a spatiotemporal chaos network is investigated. The structure of the coupling function between connected nodes of the complex network and the value range of the linear term coefficient of the separated configuration in state equation of the node are obtained through constructing an appropriate Lyapunov function. Each node of the complex network is a laser spatiotemporal chaos model in which the phase-conjugate wave and the unilateral coupled map lattice are taken as a local function and a spatially extended system, respectively. The simulation results show the effectiveness of the signal synchronization transmission principle of the network.展开更多
Various pattern evolutions are presented in one- and two-dimensional spatially coupled phase-conjugate systems (SCPCSs). As the system parameters change, different patterns are obtained from the period-doubling of k...Various pattern evolutions are presented in one- and two-dimensional spatially coupled phase-conjugate systems (SCPCSs). As the system parameters change, different patterns are obtained from the period-doubling of kink-antikinks in space to the spatiotemporal chaos in a one-dimensional SCPCS. The homogeneous symmetric states induce symmetry breaking from the four corners and the boundaries, finally leading to spatiotemporal chaos with the increase of the iteration time in a two-dimensional SCPCS. Numerical simulations are very helpful for understanding the complex optical phenomena.展开更多
Forward degenerate four-wave mixing (DFWM) processes are investigated with a femtosecond pulsed laser in lithium niobate crystal doubly-doped with magnesium and iron (LiNbO3:Fe, Mg). The pulse energy dependence r...Forward degenerate four-wave mixing (DFWM) processes are investigated with a femtosecond pulsed laser in lithium niobate crystal doubly-doped with magnesium and iron (LiNbO3:Fe, Mg). The pulse energy dependence reveals a pure third-order nonlinear response, and the third-order nonlinear susceptibility x^(3) in the material is evaluated to be 4.96 × 10^-13 esu. The time-resolved DFWM process shows a response time of x^(3) shorter than 100fs, which is due to the nonresonant electronic nonlinearities. Our results indicate that LiNbO3 crystals have potentials for ultrafast real-time optical processing systems, which require a large and fast x^(3) optical nonlinearity.展开更多
Nonlinear optical properties of stimulated Brillouin scattering (SBS) to signal detection in water are analyzed. With the threshold characteristics, SBS only occurs when the high power laser is focused in the SBS ce...Nonlinear optical properties of stimulated Brillouin scattering (SBS) to signal detection in water are analyzed. With the threshold characteristics, SBS only occurs when the high power laser is focused in the SBS cell. When there is an object present in front of the focus, it leads to lower incident intensity and then SBS does not occur. The backward SBS signal depends on the focusing location. The nonlinear optical properties of SBS process in the focusing regime are analyzed theoretically. With the object coming near to the focusing center, the backward Stokes signal rises up from zero to a maximum, and then grows to saturation. The delay time of the echo signal to pump signal can give the object location. In experiment, the peak position of varying rate of energy can give object location.展开更多
Water surface wave turbulence is one of the factors afecting the performances of underwater optical wireless communication(UOWC)systems.In our research,a phase-conjugate beam was used to correct the beam distortion an...Water surface wave turbulence is one of the factors afecting the performances of underwater optical wireless communication(UOWC)systems.In our research,a phase-conjugate beam was used to correct the beam distortion and enhance the communication performances when a system is subject to surface wave turbulence.The phase-conjugate beam was generated by a phase-conjugate mirror(PCM),and a turbulence generator was used to generate surface wave turbulence in the experiment.We calculated the beam centroid distribution and the results showed that the phase-conjugate beam had a better propagation performance than the distorted beam at the diferent water depths.The root mean square(RMS)of the beam centroid for the phase-conjugate beam was 11 times less than that for the distorted beam,which meant that the phase-conjugate beam could efectively correct the beam drift.We further investigated the scintillation index and the signal-to-noise ratio(SNR);the results showed that the phase-conjugate beam was able to reduce the scintillation and an obvious improvement in SNR could be obtained.This research has the potential to be applied in UWC.展开更多
文摘During the last decade, phase-conjugation mirror (PCM) and phase-conjugation resonator (PCR) have interest to many authors in that they can be used to improve the quality of laser beams. For a laser using conventional optical resontors, we
文摘Based on the first part of this paper (Science in China, 33(1990), 982—995), further research has been done on quasi-equivalence relation and asymmetrical character of axisymmetrical phase-conjugatlon resonator(PCR). A series of calculations for axisymmetrical PCR(hundreds of transverse modes in 66 axisymmetrical PCRs) have been carried out, and the results are compared with those of corresponding conventional laser resonators. Fundamental properties of the transverse modes (TEMs) in PCR are summarized. This makes possible a rough estimation of the properties of various TEMs in these simple PCR, including different geometrical structures.
基金Project supported by the Natural Science Foundation of Liaoning Province,China (Grant No. 20082147)
文摘The signal synchronization transmission of a spatiotemporal chaos network is investigated. The structure of the coupling function between connected nodes of the complex network and the value range of the linear term coefficient of the separated configuration in state equation of the node are obtained through constructing an appropriate Lyapunov function. Each node of the complex network is a laser spatiotemporal chaos model in which the phase-conjugate wave and the unilateral coupled map lattice are taken as a local function and a spatially extended system, respectively. The simulation results show the effectiveness of the signal synchronization transmission principle of the network.
基金Project supported by the National Natural Science Foundation of China (Grant No. 10847110)
文摘Various pattern evolutions are presented in one- and two-dimensional spatially coupled phase-conjugate systems (SCPCSs). As the system parameters change, different patterns are obtained from the period-doubling of kink-antikinks in space to the spatiotemporal chaos in a one-dimensional SCPCS. The homogeneous symmetric states induce symmetry breaking from the four corners and the boundaries, finally leading to spatiotemporal chaos with the increase of the iteration time in a two-dimensional SCPCS. Numerical simulations are very helpful for understanding the complex optical phenomena.
基金Supported by the National Natural Science Foundation of China under Grant No 60208003, and Alexander yon Humboldt Foundation.
文摘Forward degenerate four-wave mixing (DFWM) processes are investigated with a femtosecond pulsed laser in lithium niobate crystal doubly-doped with magnesium and iron (LiNbO3:Fe, Mg). The pulse energy dependence reveals a pure third-order nonlinear response, and the third-order nonlinear susceptibility x^(3) in the material is evaluated to be 4.96 × 10^-13 esu. The time-resolved DFWM process shows a response time of x^(3) shorter than 100fs, which is due to the nonresonant electronic nonlinearities. Our results indicate that LiNbO3 crystals have potentials for ultrafast real-time optical processing systems, which require a large and fast x^(3) optical nonlinearity.
基金the China Postdoctoral Science Foundation(No.20060400230)the Foundation for Innovation Talents by the Technology Ministry of Harbin(No.2006RFQXG025)
文摘Nonlinear optical properties of stimulated Brillouin scattering (SBS) to signal detection in water are analyzed. With the threshold characteristics, SBS only occurs when the high power laser is focused in the SBS cell. When there is an object present in front of the focus, it leads to lower incident intensity and then SBS does not occur. The backward SBS signal depends on the focusing location. The nonlinear optical properties of SBS process in the focusing regime are analyzed theoretically. With the object coming near to the focusing center, the backward Stokes signal rises up from zero to a maximum, and then grows to saturation. The delay time of the echo signal to pump signal can give the object location. In experiment, the peak position of varying rate of energy can give object location.
基金supported by the National Natural Science Foundation of China(Grant No.62005088)Foundation for Young Scientists of the Education Ministry of China(No.18B352)+1 种基金Hunan Provincial Natural Science Foundation of China(No.2020JJ4331)the project supported by the Science and Technology Program of Hunan Province,China(No.2019TP1014).
文摘Water surface wave turbulence is one of the factors afecting the performances of underwater optical wireless communication(UOWC)systems.In our research,a phase-conjugate beam was used to correct the beam distortion and enhance the communication performances when a system is subject to surface wave turbulence.The phase-conjugate beam was generated by a phase-conjugate mirror(PCM),and a turbulence generator was used to generate surface wave turbulence in the experiment.We calculated the beam centroid distribution and the results showed that the phase-conjugate beam had a better propagation performance than the distorted beam at the diferent water depths.The root mean square(RMS)of the beam centroid for the phase-conjugate beam was 11 times less than that for the distorted beam,which meant that the phase-conjugate beam could efectively correct the beam drift.We further investigated the scintillation index and the signal-to-noise ratio(SNR);the results showed that the phase-conjugate beam was able to reduce the scintillation and an obvious improvement in SNR could be obtained.This research has the potential to be applied in UWC.