Radio frequency(RF)transmission systems with high-precision phase stability are required by the next generation of particle colliders and light sources.An RF transmission system was designed to meet this requirement.I...Radio frequency(RF)transmission systems with high-precision phase stability are required by the next generation of particle colliders and light sources.An RF transmission system was designed to meet this requirement.In this system,RF signal generated at the sending end is modulated onto a continuous wave(CW)optical carrier,transmitted through an optical fiber,and demodulated at the receiving end.The phase drift is detected by a digital phase monitor with femtosecond-level accuracy and compensated by a motorized optical fiber delay line(ODL).The measurement results show that the long-term phase drifts can be stabilized to within 100 fs(pk-pk),500 fs(pk-pk),and 1.8 ps(pk-pk)in a 400-meter-long optical fiber over 1 h,24 h,and 10 days,respectively.展开更多
B2CN precursor is prepared by a mechanical vibration-milling process using amorphous boron, graphite and h-BN powders with mole ratio of 1:1:1. A mixture of precursor and Ca3B2N4 catalyst is treated under high press...B2CN precursor is prepared by a mechanical vibration-milling process using amorphous boron, graphite and h-BN powders with mole ratio of 1:1:1. A mixture of precursor and Ca3B2N4 catalyst is treated under high pressure and high temperature. A boron rich cubic B(CxN1-x) phase is obtained after removing the catalyst by acid treatment. The average C content of the boron-rich cubic phase is about 6 at.% detected by energy-dispersive x-ray analysis spectroscopy. It is found that the highest carbon content in the cubic phase is as large as 16 at.%.展开更多
A first-principles plane wave method with the ultrasoft pseudopotential scheme in the frame of the generalized gradient approximation (GGA) is performed to calculate the lattice parameters, the bulk modulus Bo and i...A first-principles plane wave method with the ultrasoft pseudopotential scheme in the frame of the generalized gradient approximation (GGA) is performed to calculate the lattice parameters, the bulk modulus Bo and its pressure derivative B^o of the hexagonal wurtzite GaAs (w-GaAs) by the Cambridge serial total energy package (CASTEP). Our calculations show that the most stable structure of the w-GaAs corresponds to the axial ratio c/α = 1.651 and the internal parameter u = 0.374, consistent with other theoretical results. Also, the thermodynamic properties of the w-GaAs are investigated from the quasi-harmonic Debye model. The dependences of the normalized lattice parameters α/α0, c/c0, the axial ratio c/α, the normalized volume V/V0, the heat capacity Cv and the thermal expansion α on pressure P and temperature T are also obtained successfully.展开更多
The wake bubble expansion and contraction by adding a dense-plasma wall in the background plasma during the mode transition from laser wakefield to plasma wakefield accel- eration is investigated by particle-in-cell s...The wake bubble expansion and contraction by adding a dense-plasma wall in the background plasma during the mode transition from laser wakefield to plasma wakefield accel- eration is investigated by particle-in-cell simulations. The electrons are injected continuously into the cavity until the lateral bubble size equals the inner diameter of the wall. The injected electron bunch from the laser wakefield acceleration (LWFA) scheme is quasi phase-stably accel- erated forward because of the longitudinal contraction of the bubble. After the laser pulse is depleted completely, the electron bunch generated from the LWFA scheme drives a plasma wake- field. The electrons remaining in the channel are trapped and accelerated by the plasma wakefield. Ultimately, two energetic electron bunches with a narrow energy spread and low emittance are obtained.展开更多
Recently, radiation pressure acceleration (RPA) has been proposed and extensively studied, which shows that circularly polarized (CP) laser pulses can accelerate mono-energetic ion bunches in a phase-stable-accele...Recently, radiation pressure acceleration (RPA) has been proposed and extensively studied, which shows that circularly polarized (CP) laser pulses can accelerate mono-energetic ion bunches in a phase-stable-acceleration (PSA) way from ultrathin foils. It is found that self-orgizing proton beam can be stably accelerated to GeV in the interaction of a CP laser with a planar target at 1022 W/cm2. A project called Compact LAser Plasma proton Accelerator (CLAPA) is approved by MOST in China recently. A prototype of laser driven proton accelerator (1 to 15 MeV/1 Hz) based on the PSA mechanism and plasma lens is going to be built at Peking University in the next five years. It will be upgraded to 200 MeV later for applications such as cancer therapy, plasma imaging and fast ignitiou for inertial confine fusion.展开更多
基金supported by the Foundation of the Key Laboratory of Particle Acceleration Physics and Technology of Chinese Academy of Sciences(No.29201531231141001)
文摘Radio frequency(RF)transmission systems with high-precision phase stability are required by the next generation of particle colliders and light sources.An RF transmission system was designed to meet this requirement.In this system,RF signal generated at the sending end is modulated onto a continuous wave(CW)optical carrier,transmitted through an optical fiber,and demodulated at the receiving end.The phase drift is detected by a digital phase monitor with femtosecond-level accuracy and compensated by a motorized optical fiber delay line(ODL).The measurement results show that the long-term phase drifts can be stabilized to within 100 fs(pk-pk),500 fs(pk-pk),and 1.8 ps(pk-pk)in a 400-meter-long optical fiber over 1 h,24 h,and 10 days,respectively.
基金Supported by the National Natural Science Foundation of China under Grant Nos 50225207, 50372055 and 50472051, and the National Basic Research Programme of China under Grant No 2005CB724400.
文摘B2CN precursor is prepared by a mechanical vibration-milling process using amorphous boron, graphite and h-BN powders with mole ratio of 1:1:1. A mixture of precursor and Ca3B2N4 catalyst is treated under high pressure and high temperature. A boron rich cubic B(CxN1-x) phase is obtained after removing the catalyst by acid treatment. The average C content of the boron-rich cubic phase is about 6 at.% detected by energy-dispersive x-ray analysis spectroscopy. It is found that the highest carbon content in the cubic phase is as large as 16 at.%.
基金Supported by the National Natural Science Foundation of China under Grant No 10576020.
文摘A first-principles plane wave method with the ultrasoft pseudopotential scheme in the frame of the generalized gradient approximation (GGA) is performed to calculate the lattice parameters, the bulk modulus Bo and its pressure derivative B^o of the hexagonal wurtzite GaAs (w-GaAs) by the Cambridge serial total energy package (CASTEP). Our calculations show that the most stable structure of the w-GaAs corresponds to the axial ratio c/α = 1.651 and the internal parameter u = 0.374, consistent with other theoretical results. Also, the thermodynamic properties of the w-GaAs are investigated from the quasi-harmonic Debye model. The dependences of the normalized lattice parameters α/α0, c/c0, the axial ratio c/α, the normalized volume V/V0, the heat capacity Cv and the thermal expansion α on pressure P and temperature T are also obtained successfully.
基金supported by National Natural Science Foundation of China(Nos.11047152,11147005 and 11178002)The Natural Science Foundation of Jiangxi Province of China(Nos.2010GQW0048,20122BAB202003)
文摘The wake bubble expansion and contraction by adding a dense-plasma wall in the background plasma during the mode transition from laser wakefield to plasma wakefield accel- eration is investigated by particle-in-cell simulations. The electrons are injected continuously into the cavity until the lateral bubble size equals the inner diameter of the wall. The injected electron bunch from the laser wakefield acceleration (LWFA) scheme is quasi phase-stably accel- erated forward because of the longitudinal contraction of the bubble. After the laser pulse is depleted completely, the electron bunch generated from the LWFA scheme drives a plasma wake- field. The electrons remaining in the channel are trapped and accelerated by the plasma wakefield. Ultimately, two energetic electron bunches with a narrow energy spread and low emittance are obtained.
文摘Recently, radiation pressure acceleration (RPA) has been proposed and extensively studied, which shows that circularly polarized (CP) laser pulses can accelerate mono-energetic ion bunches in a phase-stable-acceleration (PSA) way from ultrathin foils. It is found that self-orgizing proton beam can be stably accelerated to GeV in the interaction of a CP laser with a planar target at 1022 W/cm2. A project called Compact LAser Plasma proton Accelerator (CLAPA) is approved by MOST in China recently. A prototype of laser driven proton accelerator (1 to 15 MeV/1 Hz) based on the PSA mechanism and plasma lens is going to be built at Peking University in the next five years. It will be upgraded to 200 MeV later for applications such as cancer therapy, plasma imaging and fast ignitiou for inertial confine fusion.