A photonic crystal nanobeam cavity(M-PCNC)with a structure incorporating a mixture of diamond-shaped and circular air holes is pro-posed.The performance of the cavity is simulated and studied theoretically.Using thefin...A photonic crystal nanobeam cavity(M-PCNC)with a structure incorporating a mixture of diamond-shaped and circular air holes is pro-posed.The performance of the cavity is simulated and studied theoretically.Using thefinite-difference time-domain method,the parameters of the M-PCNC,including cavity thickness and width,lattice constant,and radii and numbers of holes,are optimized,with the quality factor Q and mode volume Vm as performance indicators.Mutual modulation of the lattice constant and hole radius enable the proposed M-PCNC to realize outstanding performance.The optimized cavity possesses a high quality factor Q 1.45105 and an ultra-small mode=×volume Vm 0.01(λ/n)[Zeng et al.,Opt Lett 2023:48;3981–3984]in the telecommunications wavelength range.Light can be progres-=sively squeezed in both the propagation direction and the perpendicular in-plane direction by a series of interlocked anti-slots and slots in the diamond-shaped hole structure.Thereby,the energy can be confined within a small mode volume to achieve an ultra-high Q/Vm ratio.展开更多
We present a stable valley photonic crystal(VPC)unit cell with C_(3v)symmetric quasi-ring-shaped dielectric columns and realize its topological phase transition by breaking mirror symmetry.Based on this unit cell stru...We present a stable valley photonic crystal(VPC)unit cell with C_(3v)symmetric quasi-ring-shaped dielectric columns and realize its topological phase transition by breaking mirror symmetry.Based on this unit cell structure,topological edge states(TESs)and topological corner states(TCSs)are realized.We obtain a new type of wave transmission mode based on photonic crystal zipper-like boundaries and apply it to a beam splitter assembled from rectangular photonic crystals(PCs).The constructed beam splitter structure is compact and possesses frequency separation functions.In addition,we construct a box-shaped triangular PC structures with zipper-like boundaries and discover phenomena of TCSs in the corners,comparing its corner states with those formed by other boundaries.Based on this,we explore the regularities of the electric field patterns of TESs and TCSs,explain the connection between the characteristic frequencies and locality of TCSs,which helps better control photons and ensures low power consumption of the system.展开更多
An all-optical Fano-like diode featuring a nonlinear lateral elliptical micro-cavity and a reflecting column in the photonic crystal waveguide is proposed.The asymmetric micro-cavity is constructed by removing one rod...An all-optical Fano-like diode featuring a nonlinear lateral elliptical micro-cavity and a reflecting column in the photonic crystal waveguide is proposed.The asymmetric micro-cavity is constructed by removing one rod and changing the shape of the lateral rod from a circle to an ellipse.A reflecting pillar is also introduced into the waveguide to construct an F-P cavity with the elliptical defect and enhance the asymmetric transmission for the incident light wave transmitting rightwards and leftwards,respectively.By designing the size of the ellipse and optimizing a reflecting rod at a suitable position,a maximum forward light transmittance of-1.14 dB and a minimum backward transmittance of-57.66 dB are achieved at the working wavelength of 1550.47 nm.The corresponding response time is about 10 ps when the intensity of the pump light beam resonant at 637 nm is 3.97 W/μm2.展开更多
Fabry–Perot(FP)modes are a class of fundamental resonances in photonic crystal(PhC)slabs.Owing to their low quality factors,FP modes are frequently considered as background fields with their resonance nature being ne...Fabry–Perot(FP)modes are a class of fundamental resonances in photonic crystal(PhC)slabs.Owing to their low quality factors,FP modes are frequently considered as background fields with their resonance nature being neglected.Nevertheless,FP modes can play important roles in some phenomena,as exemplified by their coupling with guided resonance(GR)modes to achieve bound states in the continuum(BIC).Here,we further demonstrate the genuine resonance mode capability of FP modes PhC slabs.Firstly,we utilize temporal coupled-mode theory to obtain the transmittance of a PhC slab based on the FP modes.Secondly,we construct exceptional points(EPs)in both momentum and parameter spaces through the coupling of FP and GR modes.Furthermore,we identify a Fermi arc connecting two EPs and discuss the far-field polarization topology.This work elucidates that the widespread FPs in PhC slabs can serve as genuine resonant modes,facilitating the realization of desired functionalities through mode coupling.展开更多
Topological slow light and rainbow trapping tend to rely on large-scale interface structure in previous research work,which have restricted further miniaturization.In this work,we propose a method to realize slow ligh...Topological slow light and rainbow trapping tend to rely on large-scale interface structure in previous research work,which have restricted further miniaturization.In this work,we propose a method to realize slow light and rainbow trapping at the zigzag edge of a single valley photonic crystals(VPCs)bounded by air,which is very different from previous studies where rainbow trapping is supported at the interface separating two VPCs with inversion symmetry.By constructing the VPC–air boundaries and VPC–VPC interfaces experimentally,we have observed the topologically protected rainbow trapping simultaneously at the external and internal boundary.This work provides a feasible platform for the miniaturized optical communication devices such as optical buffers,optical storage and optical routing.展开更多
Archimedean photonic crystal has become a research area of great interest due to its various unique properties. Here, we experimentally demonstrate the realization of reconfigurable(4, 6^(2))and(4, 8^(2)) Archimedean ...Archimedean photonic crystal has become a research area of great interest due to its various unique properties. Here, we experimentally demonstrate the realization of reconfigurable(4, 6^(2))and(4, 8^(2)) Archimedean plasma photonic crystals(APPCs) by use of dielectric barrier discharges in air. Dynamical control on both the macrostructures including the lattice symmetry and the crystal orientation, and the microstructures including the fine structures of scattering elements has been achieved. The formation mechanisms of APPCs are studied by time-resolved measurements together with numerical simulations. Large omnidirectional band gaps of APPCs have been obtained. The tunable topology of APPCs may offer new opportunities for fabricating multi-functional and highly-integrated microwave devices.展开更多
In this study, we found a kind of edge state located at the interface between plasma photonic crystals(PPCs) and traditional photonic crystals, which depends on the property of the photonic band gap rather than the su...In this study, we found a kind of edge state located at the interface between plasma photonic crystals(PPCs) and traditional photonic crystals, which depends on the property of the photonic band gap rather than the surface defect. Simulation and theoretical analysis show that by adjusting the plasma density, we can change the topological characteristics of the photonic band gap of PPCs. This makes it different from the photonic band gap of traditional PCs, and thus excites or closes the topological edge states. We further discussed the influence of plasma parameters on edge state characteristics, and the results showed that as the plasma density increased, the first photonic band gap(PBG) of the PPCs closed and then reopened, resulting in band inversion and a change in the PBG properties of the PPCs. We can control the generation of edge states through plasma and adjust the frequency and strength of the edge states. After the appearance of edge states, as the plasma density further increases, the first PBG of the PPCs will shift towards high frequencies and deepen. The frequency of edge states will shift towards higher frequencies, and their strength will also increase. We increased the first PBG depth of the PPCs by increasing the number of arrays and found that when the number of the PPCs arrays increased, only the intensity of the edge states would increase while the frequency remained unchanged. Therefore, flexible adjustment of edge state frequency and intensity can be achieved through plasma density and array quantity parameters. Our study demonstrates the properties of topological edge states in plasma photonic crystals, which we believe can provide some guidance for applications based on edge states.展开更多
The pseudo-magnetic field,an artificial synthetic gauge field,has attracted intense research interest in the classical wave system.The strong pseudo-magnetic field is realized in a two-dimensional photonic crystal(PhC...The pseudo-magnetic field,an artificial synthetic gauge field,has attracted intense research interest in the classical wave system.The strong pseudo-magnetic field is realized in a two-dimensional photonic crystal(PhC)by introducing the uniaxial linear gradient deformation.The emergence of the pseudomagnetic field leads to the quantization of Landau levels.The quantum-Hall-like edge states between adjacent Landau levels are observed in our designed experimental implementation.The combination of two reversed gradient PhCs gives rise to the spatially nonuniform pseudo-magnetic field.The propagation of the large-area edge state and the interesting phenomenon of the snake state induced by the nonuniform pseudo-magnetic field is experimentally demonstrated in a PhC heterostructure.This provides a good platform to manipulate the transport of electromagnetic waves and to design useful devices for information processing.展开更多
By means of the theory of electromagnetic wave propagation and transfer matrix method, this paper investigates the band rules for the frequency spectra of three kinds of one-dimensional (1D) aperiodic photonic cryst...By means of the theory of electromagnetic wave propagation and transfer matrix method, this paper investigates the band rules for the frequency spectra of three kinds of one-dimensional (1D) aperiodic photonic crystals (PCs), generalized Fibonacci GF(p, 1), GF(1,2), and Thue Morse (TM) PCs, with negative refractive index (NRI) materials. It is found that all of these PCs can open a broad zero-n gap, TM PC possesses the largest zero-n gap, and with the increase of p, the width of the zero-n gap for GF(p, 1) PC becomes smaller. This characteristic is caused by the symmetry of the system and the open position of the zero-n gap. It is found that for GF(p, 1) PCs, the possible limit zero-n gaps open at lower frequencies with the increase of p, but for GF(1,2) and TM PCs, their limit zero-n gaps open at the same frequency. Additionally, for the tbree bottom-bands, we find the interesting perfect self-similarities of the evolution structures with the increase of generation, and obtain the corresponding subband-number formulae. Based on 11 types of evolving manners Qi (i = 1, 2,... , 11) one can plot out the detailed evolution structures of the three kinds of aperiodic PCs for any generation.展开更多
To save finite-difference time-domain(FDTD) computing time, several methods are proposed to convert the time domain FDTD output into frequency domain. The Pad6 approximation with Baker's algorithm and the program a...To save finite-difference time-domain(FDTD) computing time, several methods are proposed to convert the time domain FDTD output into frequency domain. The Pad6 approximation with Baker's algorithm and the program are introduced to simulate photonic crystal structures. For a simple pole system with frequency 160THz and quality factor of 5000, the intensity spectrum obtained by the Padé approximation from a 2^8-item sequence output is more exact than that obtained by fast Fourier transformation from a 2^20-item sequence output. The mode frequencies and quality factors are calculated at different wave vectors for the photonic crystal slab from a much shorter FDTD output than that required by the FFT method, and then the band diagrams are obatined. In addition, mode frequencies and Q-factors are calculated for photonic crystal microcavity.展开更多
An InP-based one-dimensional photonic crystal quantum cascade laser is realized. With photo lithography instead of electron beam lithography and using inductively coupled plasma etching, four-period air-semiconductor ...An InP-based one-dimensional photonic crystal quantum cascade laser is realized. With photo lithography instead of electron beam lithography and using inductively coupled plasma etching, four-period air-semiconductor couples are defined as Bragg reflectors at one end of the resonator. The spectral measurement at 80K shows the quasi-continuous-wave operation with the wavelength of 5.36μm for a 22gm-wide and 2mm-long epilayer-up bonded device.展开更多
With the method of replacing the surface layer of photonic crystal with tubes, a novel photonic crystal composite structure used as a tunable surface mode waveguide is designed. The tubes support tunable surface state...With the method of replacing the surface layer of photonic crystal with tubes, a novel photonic crystal composite structure used as a tunable surface mode waveguide is designed. The tubes support tunable surface states. The tunable propagation capabilities of the structure are investigated by using the finite-difference time-domain. Simulation results show that the beam transmission distributions of the composite structure are sensitive to the frequency range of incident light and the surface morphology which can be modified by filling the tubes with different organic liquids. By adjusting the filler in tubes, the T-shaped, Y-shaped, and L-shaped propagations can be realized. The property can be applied to the tunable surface mode waveguide. Compared with a traditional single function photonic crystal waveguide, our designed structure not only has a small size, but also is a tunable device.展开更多
The bending photonic crystal fiber grating sensor is an important role in underwater monitoring and fire alarm systems. It is studied that the resonant wavelength expression of bending long period photonic crystal fib...The bending photonic crystal fiber grating sensor is an important role in underwater monitoring and fire alarm systems. It is studied that the resonant wavelength expression of bending long period photonic crystal fiber gratings is deduced, it is designed that a bending long period photonic crystal fiber grating sensor system, it is calculated in theory that between the bending long period photonic crystal fiber gratings sensor resonance wavelength and the grating period and the bending strain. The result is shown by calculating and analysing in theory, the grating curvature is increased by the increase of the bending strain of the grating, and the resonance wavelength of the grating sensor is drifted, the drift amount is increased, one in this grating, the drifted amount of the resonant wavelength is 0.014 nm.展开更多
One-dimensional alumina photonic crystals with defect modes were successfully fabricated through inserting a constant voltage waveform into the periodic voltage signals. The trans-mission spectra show that the thickne...One-dimensional alumina photonic crystals with defect modes were successfully fabricated through inserting a constant voltage waveform into the periodic voltage signals. The trans-mission spectra show that the thickness of defects plays a key role in determining the trans-mittance of defect modes. When the thickness was ?180 nm, an obvious defect mode with the high transmittance of 55% and a narrow full width at half maximum of 18 nm was observed in the original photonic band gaps. The defect mode shifted linearly with the increasing of refractive index of the analytes infiltrated into pores, indicating its potential application in chemical sensing or bio-sensing.展开更多
The band structure of 2D photonic crystals (PCs) and localized states resulting from defects are analyzed by finite-difference time-domain (FDTD) technique and Padé approximation.The effect of dielectric constant...The band structure of 2D photonic crystals (PCs) and localized states resulting from defects are analyzed by finite-difference time-domain (FDTD) technique and Padé approximation.The effect of dielectric constant contrast and filling factor on photonic bandgap (PBG) for perfect PCs and localized states in PCs with point defects are investigated.The resonant frequencies and quality factors are calculated for PCs with different defects.The numerical results show that it is possible to modulate the location,width and number of PBGs and frequencies of the localized states only by changing the dielectric constant contrast and filling factor.展开更多
We present an all-e-beam lithography (EBL) process for the patterning of photonic crystal waveguides. The whole device structures are exposed in two steps. Holes constituting the photonic crystal lattice and defects...We present an all-e-beam lithography (EBL) process for the patterning of photonic crystal waveguides. The whole device structures are exposed in two steps. Holes constituting the photonic crystal lattice and defects are first exposed with a small exposure step size (less than 10nm). With the introduction of the additional proximity effect to compensate the original proximity effect, the shape, size, and position of the holes can be well controlled. The second step is the exposure of the access waveguides at a larger step size (about 30nm) to improve the scan speed of the EBL. The influence of write-field stitching error can be alleviated by replacing the original waveguides with tapered waveguides at the joint of adjacent write-fields. It is found experimentally that a higher exposure efficiency is achieved with a larger step size;however,a larger step size requires a higher dose.展开更多
Recently,organ-on-chips have become a fast-growing research field with the widespread development of microfluidic chips and synthetic materials in tissue engineering.Due to the existing cardiotoxicity of many cardiova...Recently,organ-on-chips have become a fast-growing research field with the widespread development of microfluidic chips and synthetic materials in tissue engineering.Due to the existing cardiotoxicity of many cardiovascular drugs,heart-onchips which are promising to replace traditional animal models have been extensively researched and developed to mimic human organ functions in vitro.The heart-on-chips mainly focus on cardiac mechanics,which is regarded as the central indicator of in vitro heart models and drug testing.Traditional methods for the detection of myocardial mechanics have been demonstrated complex and inefficient in heart-on-chips.Therefore,photonic crystal materials with unique optical properties have attracted interests and have been introduced into the heart-on-chips,developing a visualized self-reporting system for cardiomyocytes activity monitoring.In this review,photonic crystal-based heart-on-chips for biosensing are introduced,as well as the fabricationmethods and design criteria of them.The characterizations of the photonic crystal materials are classified into optical properties and structural properties,and their applications in cell culture and biosensing are further discussed.Then,several representative examples and developments of the integration of photonic crystal materials into microfluidic chips are described in detail.Finally,potentials and limitations are put forward to promote the development of the photonic crystal-based intelligent heart-on-chips.展开更多
(GO/TiO2)N(GO represents graphene oxide,and N represents the period number of alternate superposition of two dielectrics)onedimensional photonic crystal with different lattice constants was prepared via the sol–gel t...(GO/TiO2)N(GO represents graphene oxide,and N represents the period number of alternate superposition of two dielectrics)onedimensional photonic crystal with different lattice constants was prepared via the sol–gel technique,and its transmission characteristics for photocatalysis were tested.The results show that the lattice constant,filling ratio,number of periodic layers,and incident angle had effects on the band gap.When the lattice constant,filling ratio,number of periodic layers,and incident angle were set to 125 nm,0.45,21,and 0°,respectively,a gap width of 53 nm appeared at the central wavelength(322 nm).The absorption peak of the photocatalyst at 357 nm overlapped the blue edge of the photonic band gap.A slow photon effect region above 96%reflectivity appeared.The degradation rate of tetracycline in(GO/TiO2)N photonic crystal was enhanced to 64%within 60 min.Meanwhile,the degradation efficiency of(GO/TiO2)N one-dimensional photonic crystal was effectively improved compared with those of the GO/TiO2 composite film and GO/TiO2 powder.展开更多
In this study, the propagation of electromagnetic waves in one-dimensional plasma photonic crystals (PPCs), namely, superlattice structures consisting alternately of a homogeneous unmagnetized plasma and dielectric ...In this study, the propagation of electromagnetic waves in one-dimensional plasma photonic crystals (PPCs), namely, superlattice structures consisting alternately of a homogeneous unmagnetized plasma and dielectric material, is simulated numerically using the finite-difference time-domain (FDTD) algorithm. A perfectly matched layer (PML) absorbing technique is used in this simulation. The reflection and transmission coefficients of electromagnetic (EM) waves through PPCs are calculated. The characteristics of the photonic band gap (PBG) are discussed in terms of plasma density, dielectric constant ratios, number of periods, and introduced layer defect. These may provide some useful information for designing plasma photonic crystal devices.展开更多
We take a finite dielectric photonic crystal as a homogeneous slab and have extracted the effective parameters. Our systematic study shows that the effective permittivity or permeability of dielectric photonic crystal...We take a finite dielectric photonic crystal as a homogeneous slab and have extracted the effective parameters. Our systematic study shows that the effective permittivity or permeability of dielectric photonic crystal is negative within a band gap region. This means that the band gap might act as ε-negative materials (ENMs) with ε 〈 0 and μ 〉 0, or μ-negative materials (MNMs) with ε 〉 0 and μ 〈 0. Moreover the effective parameters sensitively rely on size, surface termination, symmetry, etc. The effective parameters can be used to design full transmission tunnelling modes and amplify evanescent wave. Several cases are studied and the results show that dielectric photonic band gap can indeed mimic a single negative material (ENM or MNM) under some restrictions.展开更多
基金supported by the Open Fund of the State Key Laboratory of Advanced Optical Communication Systems and Networks (SJTU)(Grant No. 2023GZKF018)the Open Fund of IPOC (BUPT)(Grant No. IPOC2021B03)+4 种基金the National Natural Science Foundation of China (NSFC)(Grant No. 11974188)the China Postdoctoral Science Foundation (Grant Nos. 2021T140339 and 2018M632345)the Jiangsu Province Postdoctoral Science Foundation (Grant No. 2021K617C)the Postgraduate Research and Practice Innovation Program of Jiangsu Province (Grant No.KYCX22_0945)the Qing Lan Project of Jiangsu Province
文摘A photonic crystal nanobeam cavity(M-PCNC)with a structure incorporating a mixture of diamond-shaped and circular air holes is pro-posed.The performance of the cavity is simulated and studied theoretically.Using thefinite-difference time-domain method,the parameters of the M-PCNC,including cavity thickness and width,lattice constant,and radii and numbers of holes,are optimized,with the quality factor Q and mode volume Vm as performance indicators.Mutual modulation of the lattice constant and hole radius enable the proposed M-PCNC to realize outstanding performance.The optimized cavity possesses a high quality factor Q 1.45105 and an ultra-small mode=×volume Vm 0.01(λ/n)[Zeng et al.,Opt Lett 2023:48;3981–3984]in the telecommunications wavelength range.Light can be progres-=sively squeezed in both the propagation direction and the perpendicular in-plane direction by a series of interlocked anti-slots and slots in the diamond-shaped hole structure.Thereby,the energy can be confined within a small mode volume to achieve an ultra-high Q/Vm ratio.
基金Project supported by the Suzhou Basic Research Project (Grant No.SJC2023003)Suzhou City University National Project Pre-research Project (Grant No.2023SGY014)。
文摘We present a stable valley photonic crystal(VPC)unit cell with C_(3v)symmetric quasi-ring-shaped dielectric columns and realize its topological phase transition by breaking mirror symmetry.Based on this unit cell structure,topological edge states(TESs)and topological corner states(TCSs)are realized.We obtain a new type of wave transmission mode based on photonic crystal zipper-like boundaries and apply it to a beam splitter assembled from rectangular photonic crystals(PCs).The constructed beam splitter structure is compact and possesses frequency separation functions.In addition,we construct a box-shaped triangular PC structures with zipper-like boundaries and discover phenomena of TCSs in the corners,comparing its corner states with those formed by other boundaries.Based on this,we explore the regularities of the electric field patterns of TESs and TCSs,explain the connection between the characteristic frequencies and locality of TCSs,which helps better control photons and ensures low power consumption of the system.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12274478 and 61775244)the National Key Research and Development Program of China(Grant Nos.2021YFB2800604 and 2021YFB2800302).
文摘An all-optical Fano-like diode featuring a nonlinear lateral elliptical micro-cavity and a reflecting column in the photonic crystal waveguide is proposed.The asymmetric micro-cavity is constructed by removing one rod and changing the shape of the lateral rod from a circle to an ellipse.A reflecting pillar is also introduced into the waveguide to construct an F-P cavity with the elliptical defect and enhance the asymmetric transmission for the incident light wave transmitting rightwards and leftwards,respectively.By designing the size of the ellipse and optimizing a reflecting rod at a suitable position,a maximum forward light transmittance of-1.14 dB and a minimum backward transmittance of-57.66 dB are achieved at the working wavelength of 1550.47 nm.The corresponding response time is about 10 ps when the intensity of the pump light beam resonant at 637 nm is 3.97 W/μm2.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.12074049 and 12347101)。
文摘Fabry–Perot(FP)modes are a class of fundamental resonances in photonic crystal(PhC)slabs.Owing to their low quality factors,FP modes are frequently considered as background fields with their resonance nature being neglected.Nevertheless,FP modes can play important roles in some phenomena,as exemplified by their coupling with guided resonance(GR)modes to achieve bound states in the continuum(BIC).Here,we further demonstrate the genuine resonance mode capability of FP modes PhC slabs.Firstly,we utilize temporal coupled-mode theory to obtain the transmittance of a PhC slab based on the FP modes.Secondly,we construct exceptional points(EPs)in both momentum and parameter spaces through the coupling of FP and GR modes.Furthermore,we identify a Fermi arc connecting two EPs and discuss the far-field polarization topology.This work elucidates that the widespread FPs in PhC slabs can serve as genuine resonant modes,facilitating the realization of desired functionalities through mode coupling.
基金Project supported by the National Natural Science Foundation of China(Grant No.12374302)the Natural Science Foundation of Chongqing(Grant No.CSTB2022NSCQMSX0872).
文摘Topological slow light and rainbow trapping tend to rely on large-scale interface structure in previous research work,which have restricted further miniaturization.In this work,we propose a method to realize slow light and rainbow trapping at the zigzag edge of a single valley photonic crystals(VPCs)bounded by air,which is very different from previous studies where rainbow trapping is supported at the interface separating two VPCs with inversion symmetry.By constructing the VPC–air boundaries and VPC–VPC interfaces experimentally,we have observed the topologically protected rainbow trapping simultaneously at the external and internal boundary.This work provides a feasible platform for the miniaturized optical communication devices such as optical buffers,optical storage and optical routing.
基金supported by National Natural Science Foundation of China(Nos.12275065 and 11975089)Natural Science Foundation of Hebei Province(Nos.A2021201010 and A2021201003)+4 种基金Interdisciplinary Research Program of Natural Science of Hebei University(No.DXK202108)Hebei Provincial Central Government Guiding Local Science and Technology Development Funds(No.236Z1501G)Scientific Research and Innovation Team Foundation of Hebei University(No.IT2023B03)The Excellent Youth Research Innovation Team of Hebei University(No.QNTD202402)Regional Key Projects of National Natural Science Foundation of China(No.U23A20678).
文摘Archimedean photonic crystal has become a research area of great interest due to its various unique properties. Here, we experimentally demonstrate the realization of reconfigurable(4, 6^(2))and(4, 8^(2)) Archimedean plasma photonic crystals(APPCs) by use of dielectric barrier discharges in air. Dynamical control on both the macrostructures including the lattice symmetry and the crystal orientation, and the microstructures including the fine structures of scattering elements has been achieved. The formation mechanisms of APPCs are studied by time-resolved measurements together with numerical simulations. Large omnidirectional band gaps of APPCs have been obtained. The tunable topology of APPCs may offer new opportunities for fabricating multi-functional and highly-integrated microwave devices.
基金supported by National Natural Science Foundation of China (Nos. 11975163 and 12175160)Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)。
文摘In this study, we found a kind of edge state located at the interface between plasma photonic crystals(PPCs) and traditional photonic crystals, which depends on the property of the photonic band gap rather than the surface defect. Simulation and theoretical analysis show that by adjusting the plasma density, we can change the topological characteristics of the photonic band gap of PPCs. This makes it different from the photonic band gap of traditional PCs, and thus excites or closes the topological edge states. We further discussed the influence of plasma parameters on edge state characteristics, and the results showed that as the plasma density increased, the first photonic band gap(PBG) of the PPCs closed and then reopened, resulting in band inversion and a change in the PBG properties of the PPCs. We can control the generation of edge states through plasma and adjust the frequency and strength of the edge states. After the appearance of edge states, as the plasma density further increases, the first PBG of the PPCs will shift towards high frequencies and deepen. The frequency of edge states will shift towards higher frequencies, and their strength will also increase. We increased the first PBG depth of the PPCs by increasing the number of arrays and found that when the number of the PPCs arrays increased, only the intensity of the edge states would increase while the frequency remained unchanged. Therefore, flexible adjustment of edge state frequency and intensity can be achieved through plasma density and array quantity parameters. Our study demonstrates the properties of topological edge states in plasma photonic crystals, which we believe can provide some guidance for applications based on edge states.
基金supported by the Graduate Innovation Program of China University of Mining and Technology (Grant No.2023WLJCRCZL273)the Fundamental Research Funds for the Central Universities (Grant No.2023ZDYQ11003)+4 种基金the China Postdoctoral Science Foundation (Grant No.2023M743784)the State Key Laboratory of Millimeter Waves (Grant No.K202407)the Basic Research Program of Xuzhou (Grant No.KC22016)the Key Academic Discipline Project of China University of Mining and Technology (Grant No.2022WLXK06)the National Natural Science Foundation of China (Grant No.12274315).
文摘The pseudo-magnetic field,an artificial synthetic gauge field,has attracted intense research interest in the classical wave system.The strong pseudo-magnetic field is realized in a two-dimensional photonic crystal(PhC)by introducing the uniaxial linear gradient deformation.The emergence of the pseudomagnetic field leads to the quantization of Landau levels.The quantum-Hall-like edge states between adjacent Landau levels are observed in our designed experimental implementation.The combination of two reversed gradient PhCs gives rise to the spatially nonuniform pseudo-magnetic field.The propagation of the large-area edge state and the interesting phenomenon of the snake state induced by the nonuniform pseudo-magnetic field is experimentally demonstrated in a PhC heterostructure.This provides a good platform to manipulate the transport of electromagnetic waves and to design useful devices for information processing.
基金Project supported by the National Natural Science Foundation of China (Grant No 10974061)the Program for Innovative Research Team of the Higher Education of Guangdong Province of China (Grant No 06CXTD005)
文摘By means of the theory of electromagnetic wave propagation and transfer matrix method, this paper investigates the band rules for the frequency spectra of three kinds of one-dimensional (1D) aperiodic photonic crystals (PCs), generalized Fibonacci GF(p, 1), GF(1,2), and Thue Morse (TM) PCs, with negative refractive index (NRI) materials. It is found that all of these PCs can open a broad zero-n gap, TM PC possesses the largest zero-n gap, and with the increase of p, the width of the zero-n gap for GF(p, 1) PC becomes smaller. This characteristic is caused by the symmetry of the system and the open position of the zero-n gap. It is found that for GF(p, 1) PCs, the possible limit zero-n gaps open at lower frequencies with the increase of p, but for GF(1,2) and TM PCs, their limit zero-n gaps open at the same frequency. Additionally, for the tbree bottom-bands, we find the interesting perfect self-similarities of the evolution structures with the increase of generation, and obtain the corresponding subband-number formulae. Based on 11 types of evolving manners Qi (i = 1, 2,... , 11) one can plot out the detailed evolution structures of the three kinds of aperiodic PCs for any generation.
文摘To save finite-difference time-domain(FDTD) computing time, several methods are proposed to convert the time domain FDTD output into frequency domain. The Pad6 approximation with Baker's algorithm and the program are introduced to simulate photonic crystal structures. For a simple pole system with frequency 160THz and quality factor of 5000, the intensity spectrum obtained by the Padé approximation from a 2^8-item sequence output is more exact than that obtained by fast Fourier transformation from a 2^20-item sequence output. The mode frequencies and quality factors are calculated at different wave vectors for the photonic crystal slab from a much shorter FDTD output than that required by the FFT method, and then the band diagrams are obatined. In addition, mode frequencies and Q-factors are calculated for photonic crystal microcavity.
文摘An InP-based one-dimensional photonic crystal quantum cascade laser is realized. With photo lithography instead of electron beam lithography and using inductively coupled plasma etching, four-period air-semiconductor couples are defined as Bragg reflectors at one end of the resonator. The spectral measurement at 80K shows the quasi-continuous-wave operation with the wavelength of 5.36μm for a 22gm-wide and 2mm-long epilayer-up bonded device.
基金supported by the National Natural Science Foundation of China(Grant No.31401136)the School Youth Fund of Henan University of Science and Technology,China(Grant No.2014QN045)
文摘With the method of replacing the surface layer of photonic crystal with tubes, a novel photonic crystal composite structure used as a tunable surface mode waveguide is designed. The tubes support tunable surface states. The tunable propagation capabilities of the structure are investigated by using the finite-difference time-domain. Simulation results show that the beam transmission distributions of the composite structure are sensitive to the frequency range of incident light and the surface morphology which can be modified by filling the tubes with different organic liquids. By adjusting the filler in tubes, the T-shaped, Y-shaped, and L-shaped propagations can be realized. The property can be applied to the tunable surface mode waveguide. Compared with a traditional single function photonic crystal waveguide, our designed structure not only has a small size, but also is a tunable device.
文摘The bending photonic crystal fiber grating sensor is an important role in underwater monitoring and fire alarm systems. It is studied that the resonant wavelength expression of bending long period photonic crystal fiber gratings is deduced, it is designed that a bending long period photonic crystal fiber grating sensor system, it is calculated in theory that between the bending long period photonic crystal fiber gratings sensor resonance wavelength and the grating period and the bending strain. The result is shown by calculating and analysing in theory, the grating curvature is increased by the increase of the bending strain of the grating, and the resonance wavelength of the grating sensor is drifted, the drift amount is increased, one in this grating, the drifted amount of the resonant wavelength is 0.014 nm.
基金ACKNOWLEDGMENTS This work was supported by the National Basic Research Program of China (No.2012CB932303),the National Natural Science Foundation of China (No.11074254 and No.51171176), Hundred Talent Program of Chinese Academy of Sciences, and the President Foundation of Hefei Institute of Physical Sciences.
文摘One-dimensional alumina photonic crystals with defect modes were successfully fabricated through inserting a constant voltage waveform into the periodic voltage signals. The trans-mission spectra show that the thickness of defects plays a key role in determining the trans-mittance of defect modes. When the thickness was ?180 nm, an obvious defect mode with the high transmittance of 55% and a narrow full width at half maximum of 18 nm was observed in the original photonic band gaps. The defect mode shifted linearly with the increasing of refractive index of the analytes infiltrated into pores, indicating its potential application in chemical sensing or bio-sensing.
文摘The band structure of 2D photonic crystals (PCs) and localized states resulting from defects are analyzed by finite-difference time-domain (FDTD) technique and Padé approximation.The effect of dielectric constant contrast and filling factor on photonic bandgap (PBG) for perfect PCs and localized states in PCs with point defects are investigated.The resonant frequencies and quality factors are calculated for PCs with different defects.The numerical results show that it is possible to modulate the location,width and number of PBGs and frequencies of the localized states only by changing the dielectric constant contrast and filling factor.
文摘We present an all-e-beam lithography (EBL) process for the patterning of photonic crystal waveguides. The whole device structures are exposed in two steps. Holes constituting the photonic crystal lattice and defects are first exposed with a small exposure step size (less than 10nm). With the introduction of the additional proximity effect to compensate the original proximity effect, the shape, size, and position of the holes can be well controlled. The second step is the exposure of the access waveguides at a larger step size (about 30nm) to improve the scan speed of the EBL. The influence of write-field stitching error can be alleviated by replacing the original waveguides with tapered waveguides at the joint of adjacent write-fields. It is found experimentally that a higher exposure efficiency is achieved with a larger step size;however,a larger step size requires a higher dose.
基金This work was supported by the National Natural Science Foundation of China(Grants 61927805)the Natural Science Foundation of Jiangsu(Grant No.BE2018707)the Scientific Research Foundation of Nanjing University and Drum Tower Hospital.
文摘Recently,organ-on-chips have become a fast-growing research field with the widespread development of microfluidic chips and synthetic materials in tissue engineering.Due to the existing cardiotoxicity of many cardiovascular drugs,heart-onchips which are promising to replace traditional animal models have been extensively researched and developed to mimic human organ functions in vitro.The heart-on-chips mainly focus on cardiac mechanics,which is regarded as the central indicator of in vitro heart models and drug testing.Traditional methods for the detection of myocardial mechanics have been demonstrated complex and inefficient in heart-on-chips.Therefore,photonic crystal materials with unique optical properties have attracted interests and have been introduced into the heart-on-chips,developing a visualized self-reporting system for cardiomyocytes activity monitoring.In this review,photonic crystal-based heart-on-chips for biosensing are introduced,as well as the fabricationmethods and design criteria of them.The characterizations of the photonic crystal materials are classified into optical properties and structural properties,and their applications in cell culture and biosensing are further discussed.Then,several representative examples and developments of the integration of photonic crystal materials into microfluidic chips are described in detail.Finally,potentials and limitations are put forward to promote the development of the photonic crystal-based intelligent heart-on-chips.
基金the National Key R&D Program of China(No.2016YFC0700904)。
文摘(GO/TiO2)N(GO represents graphene oxide,and N represents the period number of alternate superposition of two dielectrics)onedimensional photonic crystal with different lattice constants was prepared via the sol–gel technique,and its transmission characteristics for photocatalysis were tested.The results show that the lattice constant,filling ratio,number of periodic layers,and incident angle had effects on the band gap.When the lattice constant,filling ratio,number of periodic layers,and incident angle were set to 125 nm,0.45,21,and 0°,respectively,a gap width of 53 nm appeared at the central wavelength(322 nm).The absorption peak of the photocatalyst at 357 nm overlapped the blue edge of the photonic band gap.A slow photon effect region above 96%reflectivity appeared.The degradation rate of tetracycline in(GO/TiO2)N photonic crystal was enhanced to 64%within 60 min.Meanwhile,the degradation efficiency of(GO/TiO2)N one-dimensional photonic crystal was effectively improved compared with those of the GO/TiO2 composite film and GO/TiO2 powder.
基金supported by the Program for New Century Excellent Talents in University(No.NCET-05-0575)the Education Science Foundation of Jiangxi Province(No.Z-03510)
文摘In this study, the propagation of electromagnetic waves in one-dimensional plasma photonic crystals (PPCs), namely, superlattice structures consisting alternately of a homogeneous unmagnetized plasma and dielectric material, is simulated numerically using the finite-difference time-domain (FDTD) algorithm. A perfectly matched layer (PML) absorbing technique is used in this simulation. The reflection and transmission coefficients of electromagnetic (EM) waves through PPCs are calculated. The characteristics of the photonic band gap (PBG) are discussed in terms of plasma density, dielectric constant ratios, number of periods, and introduced layer defect. These may provide some useful information for designing plasma photonic crystal devices.
基金supported by the National Key Basic Research Special Foundation of China (Grant No 2006CB921701)the National Natural Science Foundation of China (Grant Nos 10474072,10634050 and 50477048) the Shanghai Science and Technology Committee of China (Grant No 07DZ22302)
文摘We take a finite dielectric photonic crystal as a homogeneous slab and have extracted the effective parameters. Our systematic study shows that the effective permittivity or permeability of dielectric photonic crystal is negative within a band gap region. This means that the band gap might act as ε-negative materials (ENMs) with ε 〈 0 and μ 〉 0, or μ-negative materials (MNMs) with ε 〉 0 and μ 〈 0. Moreover the effective parameters sensitively rely on size, surface termination, symmetry, etc. The effective parameters can be used to design full transmission tunnelling modes and amplify evanescent wave. Several cases are studied and the results show that dielectric photonic band gap can indeed mimic a single negative material (ENM or MNM) under some restrictions.