In order to understand the physical mechanism of multipactor discharge on dielectric window surface under high power microwave (HPM) excitation in vacuum, an electron movement simulation model based on the particle-...In order to understand the physical mechanism of multipactor discharge on dielectric window surface under high power microwave (HPM) excitation in vacuum, an electron movement simulation model based on the particle-in-cell (PIC) Monte Carlo (MC) is built in this paper. The influences of microwave electromagnetic field and electrostatic field from dielectric surface charging are simultaneously considered in this model. During the simulation, the emission velocity and angle distribution of secondary electrons from the dielectric surface are taken into account. The movement trajectories of electron clusters under complex field excitation are obtained. The influences of emergence angle and microwave electromagnetic parameters on the electron movement are analyzed. It is found that the emergence angle of electrons from the surface has significant effect on its movement, and both the impact energy and return time of electrons oscillate periodically with the phase of microwave field. The number of secondary electrons and induced electrostatic field from multipactoring are also investigated. The results reveal that both values oscillate periodically at twice the microwave frequency, which is due to the electron impact energy oscillating with microwave period. A schematic diagram is proposed to explain the periodical oscillation phenomena.展开更多
This paper describes the set up and application of a non hydrostatic Canadian meteorological numerical model (MC2) for mesoscale simulations of wind field and other meteorological parameters over the complex terrain...This paper describes the set up and application of a non hydrostatic Canadian meteorological numerical model (MC2) for mesoscale simulations of wind field and other meteorological parameters over the complex terrain of Hong Kong. Results of the simulations of one case are presented and compared with the results of radiosonde and aircraft measurements. The model is proved capable of predicting high resolution, three dimensional fields of wind and other meteorological parameters within the Hong Kong territory, using reasonable computer time and memory resources.展开更多
The main ion-atomic collision treatment methods based on Monte-Carlo simulation are considered and discussed. We have proposed an efficient scheme for simulation of time between collisions taking into account cross-se...The main ion-atomic collision treatment methods based on Monte-Carlo simulation are considered and discussed. We have proposed an efficient scheme for simulation of time between collisions taking into account cross-section dependence on ion velocity and random generation of ion velocities and scattering angles after collisions. The developed algorithm of simulation of interval between collisions takes into account the change of relative velocity of ion-atom pair as well as the change of cross-section of collision and atomic concentration. At the same time, unlike the widely used “null-collision” method, both the probability of collision and change of particles’ state which determines this probability are taken into consideration for each particle independently in time. The simulation results according to the techniques proposed are found to be close to the theoretical values of ion drift velocities. It is revealed that the “null-collision” method results in exceeding of drift velocity in strong and intermediate fields. At the same time the proposed method of accumulation of probability under the same conditions gives values close to theoretical ones. In weak fields calculated values of drift velocity in both methods exceed theoretical values to some small extent.展开更多
基金supported in part by the National High Technology Research and Development Program of China
文摘In order to understand the physical mechanism of multipactor discharge on dielectric window surface under high power microwave (HPM) excitation in vacuum, an electron movement simulation model based on the particle-in-cell (PIC) Monte Carlo (MC) is built in this paper. The influences of microwave electromagnetic field and electrostatic field from dielectric surface charging are simultaneously considered in this model. During the simulation, the emission velocity and angle distribution of secondary electrons from the dielectric surface are taken into account. The movement trajectories of electron clusters under complex field excitation are obtained. The influences of emergence angle and microwave electromagnetic parameters on the electron movement are analyzed. It is found that the emergence angle of electrons from the surface has significant effect on its movement, and both the impact energy and return time of electrons oscillate periodically with the phase of microwave field. The number of secondary electrons and induced electrostatic field from multipactoring are also investigated. The results reveal that both values oscillate periodically at twice the microwave frequency, which is due to the electron impact energy oscillating with microwave period. A schematic diagram is proposed to explain the periodical oscillation phenomena.
文摘This paper describes the set up and application of a non hydrostatic Canadian meteorological numerical model (MC2) for mesoscale simulations of wind field and other meteorological parameters over the complex terrain of Hong Kong. Results of the simulations of one case are presented and compared with the results of radiosonde and aircraft measurements. The model is proved capable of predicting high resolution, three dimensional fields of wind and other meteorological parameters within the Hong Kong territory, using reasonable computer time and memory resources.
文摘The main ion-atomic collision treatment methods based on Monte-Carlo simulation are considered and discussed. We have proposed an efficient scheme for simulation of time between collisions taking into account cross-section dependence on ion velocity and random generation of ion velocities and scattering angles after collisions. The developed algorithm of simulation of interval between collisions takes into account the change of relative velocity of ion-atom pair as well as the change of cross-section of collision and atomic concentration. At the same time, unlike the widely used “null-collision” method, both the probability of collision and change of particles’ state which determines this probability are taken into consideration for each particle independently in time. The simulation results according to the techniques proposed are found to be close to the theoretical values of ion drift velocities. It is revealed that the “null-collision” method results in exceeding of drift velocity in strong and intermediate fields. At the same time the proposed method of accumulation of probability under the same conditions gives values close to theoretical ones. In weak fields calculated values of drift velocity in both methods exceed theoretical values to some small extent.