A compound neural network was constructed during the process of identification and multi-step prediction. Under the PID-type long-range predictive cost function, the control signal was calculated based on gradient alg...A compound neural network was constructed during the process of identification and multi-step prediction. Under the PID-type long-range predictive cost function, the control signal was calculated based on gradient algorithm. The nonlinear controller’s structure was similar to the conventional PID controller. The parameters of this controller were tuned by using a local recurrent neural network on-line. The controller has a better effect than the conventional PID controller. Simulation study shows the effectiveness and good performance.展开更多
A two-staged membrane separation process for hydrogen recovery from refinery gases is introduced. The principle of the gas membrane separation process and the influence of the operation temperatures are analyzed. As t...A two-staged membrane separation process for hydrogen recovery from refinery gases is introduced. The principle of the gas membrane separation process and the influence of the operation temperatures are analyzed. As the conventional PID controller is difficult to make the operation temperatures steady, a fuzzy self-tuning PID control algorithm is proposed. The application shows that the algorithm is effective, the operation temperatures of both stages can be controlled steadily, and the operation flexibility and adaptability of the hydrogen recovery unit are enhanced with safety. This study lays a foundation to optimize the control of the membrane separation process and thus ensure the membrane performance.展开更多
With the rapid development of network technology and control technology,a networked multi-agent control system is a key direction of modern industrial control systems,such as industrial Internet systems.This paper stu...With the rapid development of network technology and control technology,a networked multi-agent control system is a key direction of modern industrial control systems,such as industrial Internet systems.This paper studies the tracking control problem of networked multi-agent systems with communication constraints,where each agent has no information on the dynamics of other agents except their outputs.A networked predictive proportional integral derivative(PPID)tracking scheme is proposed to achieve the desired tracking performance,compensate actively for communication delays,and simplify implementation in a distributed manner.This scheme combines the past,present and predictive information of neighbour agents to form a tracking error signal for each agent,and applies the proportional,integral,and derivative of the agent tracking error signal to control each individual agent.The criteria of the stability and output tracking consensus of multi-agent systems with the networked PPID tracking scheme are derived through detailed analysis on the closed-loop systems.The effectiveness of the networked PPID tracking scheme is illustrated via an example.展开更多
In this paper a trial has been made to design a simple self-tuning LabVIEW-based PID controller. The controller uses an open-loop relay test, calculates the tuned parameters in an open loop mode of operation before it...In this paper a trial has been made to design a simple self-tuning LabVIEW-based PID controller. The controller uses an open-loop relay test, calculates the tuned parameters in an open loop mode of operation before it updates controller parameters and runs the process as a closed-loop system. The controller reacts on a persistent offset error value as a result of load disturbance or a set point change. Practical results show that such a controller may be recommended to control a variety of industrial processes. A GUI was developed to facilitate control-mode selection, the setting of controller parameters, and the display of control system variables. GUI makes it possible to put the controller in manual or self-tuning mode.展开更多
According to these characteristics of the movement of the special platform servo,a new improved grey predictive PID control algorithm was proposed based on the grey predictive PID,and then the algorithm was simulated ...According to these characteristics of the movement of the special platform servo,a new improved grey predictive PID control algorithm was proposed based on the grey predictive PID,and then the algorithm was simulated by MATLAB.As a result that it can improve the response speed and stability of the system,and meet the demand of the system.展开更多
In the process of capacity regulation of reciprocating compressor, the frequent change of inlet temperature and pressure makes the control of exhaust flow unstable, resulting in the high pressure ratio of the intermed...In the process of capacity regulation of reciprocating compressor, the frequent change of inlet temperature and pressure makes the control of exhaust flow unstable, resulting in the high pressure ratio of the intermediate stage. At last the compressor cannot operate safely. To solve the problem, a novel flow control scheme based on inlet temperature and pressure ratio is proposed. In this scheme, the intake model of the cylinder under the capacity regulation condition is established to calculate the load of the first cylinder. Then, the adaptive predictive PID(APPID) controller is designed to control the pressure ratio of other stages, and the grey prediction model is used to predict the pressure output to overcome the system delay. To solve the problem of control parameters tuning, an improved particle swarm optimization(PSO) algorithm is adopted to obtain the optimal control parameters.The effectiveness of the adaptive predictive PID control method is verified by a two-stage compressor model simulation.Finally, the flow control scheme is applied to the actual four-stage air reciprocating compressor flow control system. Although the temperature difference is greater than 15 ℃, the compressor exhaust flow is maintained at the set value and the pressure ratio is also maintained stable. At the same time, the compressor pressure ratio can be quickly adjusted without overshoot. The application result further verifies the feasibility and effectiveness of the scheme.展开更多
Proportional, integral and derivative (PID) control strategy has been widely applied in heating systems in decades. To improve the accuracy and the robustness of PID control, self-tuning radial-basis-function neural n...Proportional, integral and derivative (PID) control strategy has been widely applied in heating systems in decades. To improve the accuracy and the robustness of PID control, self-tuning radial-basis-function neural network PID (RBF-PID) is developed and used. Even though being popular, during the control process both of PID and RBF-PID control strategy are inadequate in achieving simultaneous high energy-efficiency and good control accuracy. To address this problem, in this paper we develop and report an enhanced self-tuning radial-basis-function neural network PID (e-RBF-PID) controller. To identify the superiority of e-RBF-PID, following works are conducted and reported in this paper. Firstly, four controllers, i.e., on-off, PID, RBF-PID and e-RBF-PID are designed. Secondly, in order to test the performance of the e-RBF-PID controller, an experimental water heating system is constructed for being controlled. Finally, the energy consumption for the four controllers under the three control scenarios is investigated through experiments. The experimental results indicate that in the three scenarios, the developed e-RBF-PID controller outperforms on-off controller as having higher accuracy. Compared to the PID controller, the e-RBF-PID controller has higher speed in control, and the experimental results show that settling time savings is between 12.6% - 49.0%. Most importantly, less control energy consumption is obtained if using the e-RBF-PID controller. It is found that up to 28.5% energy consumption can be saved. Therefore, it is concluded that the proposed e-RBF-PID is capable of enhancing energy efficiency during control process.展开更多
In view of DC speed control system, this paper presents a predictive control algorithm to replace traditional PID control. System predictive model requires little information of the controlled object, and because it...In view of DC speed control system, this paper presents a predictive control algorithm to replace traditional PID control. System predictive model requires little information of the controlled object, and because it adopts rolling optimum method, system展开更多
This paper presents a multivariable generalized predictive controller with proportion and integration structure by modifying the quadratic criterion of the usual MGPC. The control performance has been improved greatl...This paper presents a multivariable generalized predictive controller with proportion and integration structure by modifying the quadratic criterion of the usual MGPC. The control performance has been improved greatly. The effectiveness of the controller is demonstrated by the simulation result.展开更多
After a recursive multi-step-ahead predictor for nonlinear systems based on local recurrent neural networks is introduced, an intelligent FID controller is adopted to correct the errors including identified model erro...After a recursive multi-step-ahead predictor for nonlinear systems based on local recurrent neural networks is introduced, an intelligent FID controller is adopted to correct the errors including identified model errors and accumulated errors produced in the recursive process. Characterized by predictive control, this method can achieve a good control accuracy and has good robustness. A simulation study shows that this control algorithm is very effective.展开更多
This paper illustrates the benefits of a self-tuning PID strategy applied to a proton exchange membrane fuel cell system. Controller parameters are updated on-line, at each sampling time, based on an instantaneous lin...This paper illustrates the benefits of a self-tuning PID strategy applied to a proton exchange membrane fuel cell system. Controller parameters are updated on-line, at each sampling time, based on an instantaneous linearization of an artificial neural network model of the process and a General Minimum Variance control law. The self-tuning PID scheme allows managing nonlinear behaviors of the system while avoiding heavy computations. The applicability, efficiency and robustness of the proposed control strategy are experimentally confirmed using varying control scenarios. In this aim, the original built-in controller is overridden and the self-tuning PID controller is implemented externally and executed on-line. Experimental results show good performance in setpoint tracking accuracy and robustness against plant/model mismatch. The proposed strategy appears to be a promising alternative to heavy computation nonlinear control strategies and not optimal linear control strategies.展开更多
A method of measuring the interactions in a multivariable control sys-tem(MVCS)in time domain is defined in this paper.An intelligent decoupling com-pensator is designed in terms of the concept of fuzzy control,so tha...A method of measuring the interactions in a multivariable control sys-tem(MVCS)in time domain is defined in this paper.An intelligent decoupling com-pensator is designed in terms of the concept of fuzzy control,so that the auto-tuningof controllers’ parameters in a 2×2 MVCS can be turned into that of two independentsingle-loop control systems(SLCS).The method presented in the paper has success-fully been used in a simulation experiment on the automatic tuning of a coordinatedcontrol system(CCS)in the drum-boiler turbogenerating unit(DBTU)and the simu-lation results axe satisfactory.展开更多
Grey modeling can be used to predict the behavioral development of a system and find out the lead control values of the system. By using fuzzy inference, PID parameters can be adjusted on line by the fuzzy controller ...Grey modeling can be used to predict the behavioral development of a system and find out the lead control values of the system. By using fuzzy inference, PID parameters can be adjusted on line by the fuzzy controller with PID parameters self-tuning. According to the characteristics of target tracking system in a robot weapon, grey prediction theory and fuzzy PID control ideas are combined. A grey prediction mathematical model is constructed and a fuzzy PID controller with grey prediction was developed. Simulation result shows fuzzy PID control algorithm with grey prediction is an efficient method that can improve the control equality and robustness of traditional PID control and fuzzy PID control, and has much better performance for target tracking.展开更多
The omnidirectional mobile platform has three degrees of freedom that make it widely applicable to all areas of industry, while the Mecanum wheel has the disadvantages wheel omnidirectional mobile platform is always d...The omnidirectional mobile platform has three degrees of freedom that make it widely applicable to all areas of industry, while the Mecanum wheel has the disadvantages wheel omnidirectional mobile platform is always difficult in of large vibration, the trajectory precision of Mecanum the omnidirectional mobile platform. To control the trajectory of the omnidirectional mobile platform better, this paper proposes a fuzzy self-tuning PID control model, through establishing the motion model of omnidirectional mobile platform in Adams software, then combined with Simulink simulation, analysis of fuzzy PID controller to improve the accuracy of the speed control of omnidirectional mobile platform, improve the control method of a precise trajectory of the omnidirectional mobile platform motion.展开更多
基金This work was supported by the National Natural Science Foundation of China (No. 60174021, No. 60374037)the Science and Technology Greativeness Foundation of Nankai University
文摘A compound neural network was constructed during the process of identification and multi-step prediction. Under the PID-type long-range predictive cost function, the control signal was calculated based on gradient algorithm. The nonlinear controller’s structure was similar to the conventional PID controller. The parameters of this controller were tuned by using a local recurrent neural network on-line. The controller has a better effect than the conventional PID controller. Simulation study shows the effectiveness and good performance.
文摘A two-staged membrane separation process for hydrogen recovery from refinery gases is introduced. The principle of the gas membrane separation process and the influence of the operation temperatures are analyzed. As the conventional PID controller is difficult to make the operation temperatures steady, a fuzzy self-tuning PID control algorithm is proposed. The application shows that the algorithm is effective, the operation temperatures of both stages can be controlled steadily, and the operation flexibility and adaptability of the hydrogen recovery unit are enhanced with safety. This study lays a foundation to optimize the control of the membrane separation process and thus ensure the membrane performance.
文摘With the rapid development of network technology and control technology,a networked multi-agent control system is a key direction of modern industrial control systems,such as industrial Internet systems.This paper studies the tracking control problem of networked multi-agent systems with communication constraints,where each agent has no information on the dynamics of other agents except their outputs.A networked predictive proportional integral derivative(PPID)tracking scheme is proposed to achieve the desired tracking performance,compensate actively for communication delays,and simplify implementation in a distributed manner.This scheme combines the past,present and predictive information of neighbour agents to form a tracking error signal for each agent,and applies the proportional,integral,and derivative of the agent tracking error signal to control each individual agent.The criteria of the stability and output tracking consensus of multi-agent systems with the networked PPID tracking scheme are derived through detailed analysis on the closed-loop systems.The effectiveness of the networked PPID tracking scheme is illustrated via an example.
文摘In this paper a trial has been made to design a simple self-tuning LabVIEW-based PID controller. The controller uses an open-loop relay test, calculates the tuned parameters in an open loop mode of operation before it updates controller parameters and runs the process as a closed-loop system. The controller reacts on a persistent offset error value as a result of load disturbance or a set point change. Practical results show that such a controller may be recommended to control a variety of industrial processes. A GUI was developed to facilitate control-mode selection, the setting of controller parameters, and the display of control system variables. GUI makes it possible to put the controller in manual or self-tuning mode.
基金supported by the Chongqing Scientific and Technological Innovating Program under grant CSTC2008AC1014
文摘According to these characteristics of the movement of the special platform servo,a new improved grey predictive PID control algorithm was proposed based on the grey predictive PID,and then the algorithm was simulated by MATLAB.As a result that it can improve the response speed and stability of the system,and meet the demand of the system.
基金Supported by the State Key Laboratory of Compressor Technology Open Fund Project(No.SKLYSJ201808/SKLYS201811)the National Key Research and Development Plan(No.2016YFF0203305).
文摘In the process of capacity regulation of reciprocating compressor, the frequent change of inlet temperature and pressure makes the control of exhaust flow unstable, resulting in the high pressure ratio of the intermediate stage. At last the compressor cannot operate safely. To solve the problem, a novel flow control scheme based on inlet temperature and pressure ratio is proposed. In this scheme, the intake model of the cylinder under the capacity regulation condition is established to calculate the load of the first cylinder. Then, the adaptive predictive PID(APPID) controller is designed to control the pressure ratio of other stages, and the grey prediction model is used to predict the pressure output to overcome the system delay. To solve the problem of control parameters tuning, an improved particle swarm optimization(PSO) algorithm is adopted to obtain the optimal control parameters.The effectiveness of the adaptive predictive PID control method is verified by a two-stage compressor model simulation.Finally, the flow control scheme is applied to the actual four-stage air reciprocating compressor flow control system. Although the temperature difference is greater than 15 ℃, the compressor exhaust flow is maintained at the set value and the pressure ratio is also maintained stable. At the same time, the compressor pressure ratio can be quickly adjusted without overshoot. The application result further verifies the feasibility and effectiveness of the scheme.
文摘Proportional, integral and derivative (PID) control strategy has been widely applied in heating systems in decades. To improve the accuracy and the robustness of PID control, self-tuning radial-basis-function neural network PID (RBF-PID) is developed and used. Even though being popular, during the control process both of PID and RBF-PID control strategy are inadequate in achieving simultaneous high energy-efficiency and good control accuracy. To address this problem, in this paper we develop and report an enhanced self-tuning radial-basis-function neural network PID (e-RBF-PID) controller. To identify the superiority of e-RBF-PID, following works are conducted and reported in this paper. Firstly, four controllers, i.e., on-off, PID, RBF-PID and e-RBF-PID are designed. Secondly, in order to test the performance of the e-RBF-PID controller, an experimental water heating system is constructed for being controlled. Finally, the energy consumption for the four controllers under the three control scenarios is investigated through experiments. The experimental results indicate that in the three scenarios, the developed e-RBF-PID controller outperforms on-off controller as having higher accuracy. Compared to the PID controller, the e-RBF-PID controller has higher speed in control, and the experimental results show that settling time savings is between 12.6% - 49.0%. Most importantly, less control energy consumption is obtained if using the e-RBF-PID controller. It is found that up to 28.5% energy consumption can be saved. Therefore, it is concluded that the proposed e-RBF-PID is capable of enhancing energy efficiency during control process.
文摘In view of DC speed control system, this paper presents a predictive control algorithm to replace traditional PID control. System predictive model requires little information of the controlled object, and because it adopts rolling optimum method, system
文摘This paper presents a multivariable generalized predictive controller with proportion and integration structure by modifying the quadratic criterion of the usual MGPC. The control performance has been improved greatly. The effectiveness of the controller is demonstrated by the simulation result.
基金This project was supported by the National Natural Science Foundation of China(60174021)Natural Science Foundation Key Project of Tianjin(013800711).
文摘After a recursive multi-step-ahead predictor for nonlinear systems based on local recurrent neural networks is introduced, an intelligent FID controller is adopted to correct the errors including identified model errors and accumulated errors produced in the recursive process. Characterized by predictive control, this method can achieve a good control accuracy and has good robustness. A simulation study shows that this control algorithm is very effective.
文摘This paper illustrates the benefits of a self-tuning PID strategy applied to a proton exchange membrane fuel cell system. Controller parameters are updated on-line, at each sampling time, based on an instantaneous linearization of an artificial neural network model of the process and a General Minimum Variance control law. The self-tuning PID scheme allows managing nonlinear behaviors of the system while avoiding heavy computations. The applicability, efficiency and robustness of the proposed control strategy are experimentally confirmed using varying control scenarios. In this aim, the original built-in controller is overridden and the self-tuning PID controller is implemented externally and executed on-line. Experimental results show good performance in setpoint tracking accuracy and robustness against plant/model mismatch. The proposed strategy appears to be a promising alternative to heavy computation nonlinear control strategies and not optimal linear control strategies.
文摘A method of measuring the interactions in a multivariable control sys-tem(MVCS)in time domain is defined in this paper.An intelligent decoupling com-pensator is designed in terms of the concept of fuzzy control,so that the auto-tuningof controllers’ parameters in a 2×2 MVCS can be turned into that of two independentsingle-loop control systems(SLCS).The method presented in the paper has success-fully been used in a simulation experiment on the automatic tuning of a coordinatedcontrol system(CCS)in the drum-boiler turbogenerating unit(DBTU)and the simu-lation results axe satisfactory.
基金the Ministerial Level Advanced Research Foundation (061103)
文摘Grey modeling can be used to predict the behavioral development of a system and find out the lead control values of the system. By using fuzzy inference, PID parameters can be adjusted on line by the fuzzy controller with PID parameters self-tuning. According to the characteristics of target tracking system in a robot weapon, grey prediction theory and fuzzy PID control ideas are combined. A grey prediction mathematical model is constructed and a fuzzy PID controller with grey prediction was developed. Simulation result shows fuzzy PID control algorithm with grey prediction is an efficient method that can improve the control equality and robustness of traditional PID control and fuzzy PID control, and has much better performance for target tracking.
文摘The omnidirectional mobile platform has three degrees of freedom that make it widely applicable to all areas of industry, while the Mecanum wheel has the disadvantages wheel omnidirectional mobile platform is always difficult in of large vibration, the trajectory precision of Mecanum the omnidirectional mobile platform. To control the trajectory of the omnidirectional mobile platform better, this paper proposes a fuzzy self-tuning PID control model, through establishing the motion model of omnidirectional mobile platform in Adams software, then combined with Simulink simulation, analysis of fuzzy PID controller to improve the accuracy of the speed control of omnidirectional mobile platform, improve the control method of a precise trajectory of the omnidirectional mobile platform motion.