Three speed controllers for an axial magnetic flux switched reluctance motor with only one stator, are described and experimentally tested. As it is known, when current pulses are imposed in their windings, high rippl...Three speed controllers for an axial magnetic flux switched reluctance motor with only one stator, are described and experimentally tested. As it is known, when current pulses are imposed in their windings, high ripple torque is obtained. In order to reduce this ripple, a control strategy with modified current shapes is proposed. A workbench consisting of a machine prototype and the control system based on a microcontroller was built. These controllers were: a conventional PID, a fuzzy logic PID and a neural PID type. From experimental results, the effective reduction of the torque ripple was confirmed and the performance of the controllers was compared.展开更多
Frequency and voltage of embedded variable speed wind turbine (VSWT) driving a permanent magnet synchronous generator (PMSG) is strongly affected by wind speed fluctuations. In practice, power imbalance between supply...Frequency and voltage of embedded variable speed wind turbine (VSWT) driving a permanent magnet synchronous generator (PMSG) is strongly affected by wind speed fluctuations. In practice, power imbalance between supply and demand is also common, especially when VSWT-PMSG is connected to a weak micro grid (MG). If load demand fluctuations become high, isolated MG may be unable to stabilize the frequency and voltage so that battery storage needs to be installed into the MG to adjust energy supply and demand. To allow flexible control of active and reactive power flow from/to battery storage, grid-supporting inverters are used. For a system that contains highly nonlinear components, the use of conventional linear proportional-integral-derivative (PID) controllers may cause system performance deterioration. Additionally, these controllers show slow, oscillating responses, and complex equations are required to obtain optimum responses in other controllers. To cope with these limitations, this paper proposes PID-type fuzzy controller (PIDfc) design to control grid-supporting inverter of battery. To ensure safe battery operating limits, we also propose a new controller scheme called intelligent battery protection (IBP). This IBP is integrated into PIDfc. Several simulation tests are performed to verify the scheme’s effectiveness. The results show that the proposed PIDfc controller exhibits improved performance and acceptable responses, and can be used instead of conventional controllers.展开更多
To better regulate the speed of brushless DC motors,an improved algorithm based on the original Glowworm Swarm Optimization is proposed.The proposed algorithm solves the problems of poor robustness,slow convergence,an...To better regulate the speed of brushless DC motors,an improved algorithm based on the original Glowworm Swarm Optimization is proposed.The proposed algorithm solves the problems of poor robustness,slow convergence,and low accuracy exhibited by traditional PID controllers.When selecting the glowworm neighborhood set,an optimization scheme based on the growth and competition behavior of weeds is applied to a single glowworm to prevent falling into a local optimal solution.After the glowworm’s position is updated,the league selection operator is introduced to search for the global optimal solution.Combining the local search ability of the invasive weed optimization with the global search ability of the league selection operator enhances the robustness of the algorithm and also accelerates the convergence speed of the algorithm.The mathematical model of the brushless DC motor is established,the PID parameters are tuned and optimized using improved Glowworm Swarm Optimization algorithm,and the speed of the brushless DC motor is adjusted.In a Simulink environment,a double closed-loop speed control model was established to simulate the speed control of a brushless DC motor,and this simulation was compared with a traditional PID control.The simulation results show that the model based on the improved Glowworm Swarm Optimization algorithm has good robustness and a steady-state response speed for motor speed control.展开更多
针对鲸鱼优化算法易陷入局部最优以及无刷直流电机(brushless DC motor,BLDCM)速度控制响应慢、超调量大等缺点,提出一种改进鲸鱼优化算法(improve whale optimization algorithm,IWOA)优化PID(proportional integral derivative)参数...针对鲸鱼优化算法易陷入局部最优以及无刷直流电机(brushless DC motor,BLDCM)速度控制响应慢、超调量大等缺点,提出一种改进鲸鱼优化算法(improve whale optimization algorithm,IWOA)优化PID(proportional integral derivative)参数的无刷直流电机速度控制算法.该算法采用高斯变异因子、自适应权重因子和动态阈值相结合对鲸鱼优化算法进行优化.仿真实验结果表明,改进鲸鱼优化PID的无刷直流电机转速控制算法具有更快的收敛速度以及较小的超调现象,鲁棒性也更好.展开更多
This paper proposes the current search (CS) metaheuristics conceptualized from the electric current flowing through electric networks for optimization problems with continuous design variables. The CS algorithm posses...This paper proposes the current search (CS) metaheuristics conceptualized from the electric current flowing through electric networks for optimization problems with continuous design variables. The CS algorithm possesses two powerful strategies, exploration and exploitation, for searching the global optimum. Based on the stochastic process, the derivatives of the objective function is unnecessary for the proposed CS. To evaluate its performance, the CS is tested against several unconstrained optimization problems. The results obtained are compared to those obtained by the popular search techniques, i.e., the genetic algorithm (GA), the particle swarm optimization (PSO), and the adaptive tabu search (ATS). As results, the CS outperforms other algorithms and provides superior results. The CS is also applied to a constrained design of the optimum PID controller for the dc motor speed control system. From experimental results, the CS has been successfully applied to the speed control of the dc motor.展开更多
The functional range of actiyator of diesel engine used in bulldozer was limited when the load of bulldozer was heavy, inconstancy and in the condition of fine working. For this reason the engine rotary speed controll...The functional range of actiyator of diesel engine used in bulldozer was limited when the load of bulldozer was heavy, inconstancy and in the condition of fine working. For this reason the engine rotary speed controlling system consisted of digital controller and proportional actuator was applied; to meet the needs of high controlling precision requirement the online system identification for the engine rotary speed controlling system was carry out;Based on the result of system identification the control parameter PID was optimized. Test study proved that this engine speed controlling method have an excellent speed controlling performance.展开更多
文摘Three speed controllers for an axial magnetic flux switched reluctance motor with only one stator, are described and experimentally tested. As it is known, when current pulses are imposed in their windings, high ripple torque is obtained. In order to reduce this ripple, a control strategy with modified current shapes is proposed. A workbench consisting of a machine prototype and the control system based on a microcontroller was built. These controllers were: a conventional PID, a fuzzy logic PID and a neural PID type. From experimental results, the effective reduction of the torque ripple was confirmed and the performance of the controllers was compared.
文摘Frequency and voltage of embedded variable speed wind turbine (VSWT) driving a permanent magnet synchronous generator (PMSG) is strongly affected by wind speed fluctuations. In practice, power imbalance between supply and demand is also common, especially when VSWT-PMSG is connected to a weak micro grid (MG). If load demand fluctuations become high, isolated MG may be unable to stabilize the frequency and voltage so that battery storage needs to be installed into the MG to adjust energy supply and demand. To allow flexible control of active and reactive power flow from/to battery storage, grid-supporting inverters are used. For a system that contains highly nonlinear components, the use of conventional linear proportional-integral-derivative (PID) controllers may cause system performance deterioration. Additionally, these controllers show slow, oscillating responses, and complex equations are required to obtain optimum responses in other controllers. To cope with these limitations, this paper proposes PID-type fuzzy controller (PIDfc) design to control grid-supporting inverter of battery. To ensure safe battery operating limits, we also propose a new controller scheme called intelligent battery protection (IBP). This IBP is integrated into PIDfc. Several simulation tests are performed to verify the scheme’s effectiveness. The results show that the proposed PIDfc controller exhibits improved performance and acceptable responses, and can be used instead of conventional controllers.
基金This research was funded by the Hebei Science and Technology Support Program Project(19273703D)the Hebei Higher Education Science and Technology Research Project(ZD2020318).
文摘To better regulate the speed of brushless DC motors,an improved algorithm based on the original Glowworm Swarm Optimization is proposed.The proposed algorithm solves the problems of poor robustness,slow convergence,and low accuracy exhibited by traditional PID controllers.When selecting the glowworm neighborhood set,an optimization scheme based on the growth and competition behavior of weeds is applied to a single glowworm to prevent falling into a local optimal solution.After the glowworm’s position is updated,the league selection operator is introduced to search for the global optimal solution.Combining the local search ability of the invasive weed optimization with the global search ability of the league selection operator enhances the robustness of the algorithm and also accelerates the convergence speed of the algorithm.The mathematical model of the brushless DC motor is established,the PID parameters are tuned and optimized using improved Glowworm Swarm Optimization algorithm,and the speed of the brushless DC motor is adjusted.In a Simulink environment,a double closed-loop speed control model was established to simulate the speed control of a brushless DC motor,and this simulation was compared with a traditional PID control.The simulation results show that the model based on the improved Glowworm Swarm Optimization algorithm has good robustness and a steady-state response speed for motor speed control.
文摘针对鲸鱼优化算法易陷入局部最优以及无刷直流电机(brushless DC motor,BLDCM)速度控制响应慢、超调量大等缺点,提出一种改进鲸鱼优化算法(improve whale optimization algorithm,IWOA)优化PID(proportional integral derivative)参数的无刷直流电机速度控制算法.该算法采用高斯变异因子、自适应权重因子和动态阈值相结合对鲸鱼优化算法进行优化.仿真实验结果表明,改进鲸鱼优化PID的无刷直流电机转速控制算法具有更快的收敛速度以及较小的超调现象,鲁棒性也更好.
文摘This paper proposes the current search (CS) metaheuristics conceptualized from the electric current flowing through electric networks for optimization problems with continuous design variables. The CS algorithm possesses two powerful strategies, exploration and exploitation, for searching the global optimum. Based on the stochastic process, the derivatives of the objective function is unnecessary for the proposed CS. To evaluate its performance, the CS is tested against several unconstrained optimization problems. The results obtained are compared to those obtained by the popular search techniques, i.e., the genetic algorithm (GA), the particle swarm optimization (PSO), and the adaptive tabu search (ATS). As results, the CS outperforms other algorithms and provides superior results. The CS is also applied to a constrained design of the optimum PID controller for the dc motor speed control system. From experimental results, the CS has been successfully applied to the speed control of the dc motor.
文摘The functional range of actiyator of diesel engine used in bulldozer was limited when the load of bulldozer was heavy, inconstancy and in the condition of fine working. For this reason the engine rotary speed controlling system consisted of digital controller and proportional actuator was applied; to meet the needs of high controlling precision requirement the online system identification for the engine rotary speed controlling system was carry out;Based on the result of system identification the control parameter PID was optimized. Test study proved that this engine speed controlling method have an excellent speed controlling performance.