经典的特征线法(method of characteristics,MOC)因其简单方便,边界条件易于耦合求解,常应用于有压管道瞬变流方程的数值求解.对于复杂管道系统,受库朗数限制,该方法往往需要进行波速调整或插值求解,可能出现严重的累积误差和数值耗散....经典的特征线法(method of characteristics,MOC)因其简单方便,边界条件易于耦合求解,常应用于有压管道瞬变流方程的数值求解.对于复杂管道系统,受库朗数限制,该方法往往需要进行波速调整或插值求解,可能出现严重的累积误差和数值耗散.有限体积法Godunov格式(Godunov type scheme,GTS)对管道内部库朗数具有良好的鲁棒性,但边界条件采用精确黎曼不变量方法,处理复杂.同时,以往水锤计算通常仅考虑稳态摩阻,低估了瞬变压力的衰减.文章提出并推导了考虑动态摩阻的GTS-MOC耦合模型,使用二阶GTS计算管道内部控制体,在复杂边界处采用耦合GTS-MOC方法处理.首先,针对串联管和分叉管边界条件,对精确黎曼不变量方法和MOC方法进行了理论分析.推导结果表明,在马赫数(Ma)较小的管道瞬变流求解中,两种边界处理方法结果一致,与实验结果对比分析,验证了耦合格式求解的准确性.最后,将耦合格式分别与GTS和MOC进行比较.结果证明,耦合格式可以达到和GTS相同的精度,同时,串联管道系统中MOC线性插值法和波速调整法均存在数值耗散且随时间增加更明显,耦合格式结果具有准确性和稳定性,与精确解更吻合.展开更多
文摘经典的特征线法(method of characteristics,MOC)因其简单方便,边界条件易于耦合求解,常应用于有压管道瞬变流方程的数值求解.对于复杂管道系统,受库朗数限制,该方法往往需要进行波速调整或插值求解,可能出现严重的累积误差和数值耗散.有限体积法Godunov格式(Godunov type scheme,GTS)对管道内部库朗数具有良好的鲁棒性,但边界条件采用精确黎曼不变量方法,处理复杂.同时,以往水锤计算通常仅考虑稳态摩阻,低估了瞬变压力的衰减.文章提出并推导了考虑动态摩阻的GTS-MOC耦合模型,使用二阶GTS计算管道内部控制体,在复杂边界处采用耦合GTS-MOC方法处理.首先,针对串联管和分叉管边界条件,对精确黎曼不变量方法和MOC方法进行了理论分析.推导结果表明,在马赫数(Ma)较小的管道瞬变流求解中,两种边界处理方法结果一致,与实验结果对比分析,验证了耦合格式求解的准确性.最后,将耦合格式分别与GTS和MOC进行比较.结果证明,耦合格式可以达到和GTS相同的精度,同时,串联管道系统中MOC线性插值法和波速调整法均存在数值耗散且随时间增加更明显,耦合格式结果具有准确性和稳定性,与精确解更吻合.