The plastic flow behavior of the rotating band material is investigated in this paper. The rotating band material is processed from H96 brass alloy, which is hardened to a much higher yield strength compared to the an...The plastic flow behavior of the rotating band material is investigated in this paper. The rotating band material is processed from H96 brass alloy, which is hardened to a much higher yield strength compared to the annealed one. The dynamically uniaxial compression behavior of the material is tested using the split Hopkinson pressure bar(SHPB) with temperature and strain rate ranging from 297 to 1073 K and500 to 3000 s^(-1), respectively, and a phenomenological plastic flow stress model is developed to describe the mechanical behavior of the material. The material is found to present noticeable temperature sensitivity and weak strain-rate sensitivity. The construction of the plastic flow stress model has two steps. Firstly, three univariate stress functions, taking plastic strain, plastic strain rate and temperature as independent variable, respectively, are proposed by fixing the other two variables. Then, as the three univariate functions describe the special cases of flow stress behavior under various conditions, the principle of stress compatibility is adopted to obtain the complete flow stress function. The numerical results show that the proposed plastic flow stress model is more suitable for the rotating band material than the existing well-known models.展开更多
The homogeneous plastic flow of fully amorphous and partially crystallized Zr(41.2)Ti(13.8)Cu(12.5)Ni(10)Be(22.5) bulk metallic glass (Vitl) has been investigated by compression tests at high temperatures in supercool...The homogeneous plastic flow of fully amorphous and partially crystallized Zr(41.2)Ti(13.8)Cu(12.5)Ni(10)Be(22.5) bulk metallic glass (Vitl) has been investigated by compression tests at high temperatures in supercooled liquid region. Experimental results show that at sufficiently low strain rates, the supercooled liquid of the fully amorphous alloy reveals Newtonian flow with a linear relationship between the flow stress and strain rate. As the strain rate is increased, a transition from linear Newtonian to nonlinear flow is detected, which can be explained by the transition state theory. Over the entire strain rate interval investigated, however, only nonlinear flow is present in the partially crystallized alloy, and the flow stress for each strain rate is much higher. It is found that the strain rate-stress relationship for the partially crystaltized alloy at the given temperature of 646 K also obeys the sinh law derived from the transition state theory, similar to that of the initial homogeneous amorphous alloy. Thus, it is proposed that the flow behavior of the nanocrystalline/amorphous composite at 646 K is mainly controlled by the viscous flow of the remaining supercooled liquid.展开更多
Recent studies have shown that the size of microvoids has a significant effect on the void growth rate.The purpose of this paper is to explore whether the void size effect can influence the plastic flow localization i...Recent studies have shown that the size of microvoids has a significant effect on the void growth rate.The purpose of this paper is to explore whether the void size effect can influence the plastic flow localization in ductile materials.We have used the extended Gurson's dilatational plasticity theory,which accounts for the void size effect,to study the plastic flow localization in porous solids with long cylindrical voids.The localization model of Rice is adopted,in which the material inside the band may display a different response from that outside the band at the incipient plastic flow localization.The present study shows that it has little effect on the shear band angle.展开更多
Photoplastic experiment were conducted with connecting rods of AX100 motorcycle engine during finish forging to investigate material plastic flow law of long -axis forgings with comples geometrie’s by observing
The semi-solid filling-plastic flowing integrated forging process of semi-solid 6061 Al alloy was simulated by commercial finite element software DEFORM-3D.Temperature,fluid and stress-strain fields were considered in...The semi-solid filling-plastic flowing integrated forging process of semi-solid 6061 Al alloy was simulated by commercial finite element software DEFORM-3D.Temperature,fluid and stress-strain fields were considered in numerical simulation.The simulation results show that the plastic deformation of billet of the ends is higher than that of billet in the straight cylinder.The value of plastic deformation varies with loading mode and plastic deformation fields at the stage of increasing pressure to constant value.When the thixoforging experiments were performed at 590 ℃,15 mm/s of punch velocity and 46 MPa of pressure side urn,it gets the filling wholly and dense internal organization of semi-solid thixoforging parts is gotten.Finite element analysis results are compatible with experimental ones.展开更多
The thermal shock of subsurface material with shear instability and severe plastic flow during scuffing was investigated.The scuffing damage of M50 steel was tested using a high-speed rolling-sliding contact test rig,...The thermal shock of subsurface material with shear instability and severe plastic flow during scuffing was investigated.The scuffing damage of M50 steel was tested using a high-speed rolling-sliding contact test rig,and the transient temperature during scuffing was calculated using the Fourier transform method considering the effects of both frictional heat and plastic work.The results show that a thermal shock with a rapid rise and subsequent rapid decrease in the contact temperature is generated in the subsurface layers.The frictional power intensity generates a high temperature rise,leading to the austenitization of the subsurface material.Consequently,the plastic flow is generated in the subsurface layer under the high shear stress,and the resulting plastic strain energy generates a further temperature increase.Subsequently,a rapid decrease in the contact temperature quenches the material,resulting in clear shear slip bands and retained austenite in the subsurface layers of the M50 steel.展开更多
In this work,a genuinely two-dimensional HLL-type approximate Riemann solver is proposed for hypo-elastic plastic flow.To consider the effects of wave interaction from both the x-and y-directions,a corresponding 2D el...In this work,a genuinely two-dimensional HLL-type approximate Riemann solver is proposed for hypo-elastic plastic flow.To consider the effects of wave interaction from both the x-and y-directions,a corresponding 2D elastic-plastic approximate solver is constructed with elastic-plastic transition embedded.The resultant numerical flux combines one-dimensional numerical flux in the central region of the cell edge and two-dimensional flux in the cell vertex region.The stress is updated separately by using the velocity obtained with the above approximate Riemann solver.Several numerical tests,including genuinely two-dimensional examples,are presented to test the performances of the proposed method.The numerical results demonstrate the credibility of the present 2D approximate Riemann solver.展开更多
In a large area of the east—central Asian continent there is a unified seismic network system composed of two families of large—seismic belts that intersect conjugately. Such a seismic network in the middle—upper c...In a large area of the east—central Asian continent there is a unified seismic network system composed of two families of large—seismic belts that intersect conjugately. Such a seismic network in the middle—upper crust is actually a response to the plastic flow network in the lower lithosphere including the lower crust and lithospheric mantle. The existence of the unified plastic flow system confirms that the driving force for intraplate tectonic deformation results mainly from the compression of the India plate, while the long-range transmission of the force is carried out chiefly by means of plastic flow. The plastic flow network has a control over the intraplate tectonic deformation.展开更多
An experimental analysis on the subsequent yield-surfaces evolution using multiple specimens is presented for a 45 steel after a prescribed pre-strain loading in three different directions respectively, and the yieldi...An experimental analysis on the subsequent yield-surfaces evolution using multiple specimens is presented for a 45 steel after a prescribed pre-strain loading in three different directions respectively, and the yielding is defined by a designated offsetting strain. The size of the subsequent yield surface is found smaller than the initial yield surface; the negative cross effects are observed in the normal loading direction, its shape is not a Mises circle but has a rather blunt nose in loading direction and flat in the opposite. These results strongly depend on the loading path and the prescribed offset plastic strain. The plastic flow direction to the subsequent yield surface is investigated, and it is found that the plastic flow direction deviates from the normal flow rule. The deviation differs from preloading case to preloading case. And the plastic flow direction would have a larger deviation from the normal of the yield surface, if the subsequent yield was defined by a smaller offset strain. Furthermore, the experiments are simulated using the Chaboche model, and the results show that it can rationally predict yield-surface only when yield is defined by a fairly large offset strain.展开更多
It has not been a simple matter to obtain a sound extension of the classical J2 flow theory of plasticity that incorporates a dependence on plastic strain gradients and that is capable of capturing size-dependent beha...It has not been a simple matter to obtain a sound extension of the classical J2 flow theory of plasticity that incorporates a dependence on plastic strain gradients and that is capable of capturing size-dependent behaviour of metals at the micron scale. Two classes of basic extensions of classical J2 theory have been proposed: one with increments in higher order stresses related to increments of strain gradients and the other characterized by the higher order stresses themselves expressed in terms of increments of strain gradients. The theories proposed by Muhlhans and Aifantis in 1991 and Fleck and Hutchinson in 2001 are in the first class, and, as formulated, these do not always satisfy thermodynamic requirements on plastic dissipation. On the other hand, theories of the second class proposed by Gudmundson in 2004 and Gurtin and Anand in 2009 have the physical deficiency that the higher order stress quantities can change discontinuously for bodies subject to arbitrarily small load changes. The present paper lays out this background to the quest for a sound phenomenological extension of the rateindependent J2 flow theory of plasticity to include a de- pendence on gradients of plastic strain. A modification of the Fleck-Hutchinson formulation that ensures its thermo- dynamic integrity is presented and contrasted with a comparable formulation of the second class where in the higher or- der stresses are expressed in terms of the plastic strain rate. Both versions are constructed to reduce to the classical J2 flow theory of plasticity when the gradients can be neglected and to coincide with the simpler and more readily formulated J2 deformation theory of gradient plasticity for deformation histories characterized by proportional straining.展开更多
1 Previous study and geological background Sphene is a common accessory mineral in igneous and metamorphic rocks. It is usuallynot deformed because it is more competent than the major rock-forming minerals, such asqua...1 Previous study and geological background Sphene is a common accessory mineral in igneous and metamorphic rocks. It is usuallynot deformed because it is more competent than the major rock-forming minerals, such asquartz, feldspars and mica. Little is known about the plastic property of sphene.展开更多
Based on the heat flow data published in 1990 and 2001, a study of the factors influencing the terrestrial heat flow distribution in the China continent and its quantitative expression is carried out using the "Netli...Based on the heat flow data published in 1990 and 2001, a study of the factors influencing the terrestrial heat flow distribution in the China continent and its quantitative expression is carried out using the "Netlike Plastic-Flow" continental dynamics model and the methods of statistic analysis and optimum fitting. The result indicates that the factors influencing the heat flow distribution is classified into two groups, i.e. background and tectonic ones, in which the former mainly involves the non- uniform distribution of mantle heat flow, heat production of radioactive dements in the crust, heattransfer media and hydrothermal circulation, while the latter mainly involves plastic-flow networks and relatively-stable blocks. The plastic-flow network is a manifestation of shear localization in the netlike plastic-flow process in the lower lithosphere, which is composed of two sets of plastic-flow belts (PFBs) intersecting each other and, as one of the basic action regimes, controls the intraplate tectonic deformation. Relatively stable blocks (RSBs), which are the tectonic units with relatively-high viscosities existing in the netlike plastic-flow field, as one of the principal origins, result in the development of large-seale compressional basins. PFB and RSB, as the active and quiet states of tectonic deformation, give rise to the higher and lower heat flow values, respectivdy. The provincial average heat flow in continent can be estimated using the expression qav = q0 + a Pbt-c Pbk, where the three terms of the right side are background heat flow, PFB-positive contribution and RSB-negative contribution, Pbt and Pbk are the PFB- and RSB-coverage ratios, respectively, a is the coefficient of PFB- positive contribution depending mainly on the strain in the lower lithosphere, and c is the coefficient of RSB-negative contribution related mainly to the thickness of the lithosphere, the aseismic-area ratio and the tectonic age. For the major portion of the China continent excluding some of the southeastern region of China, the confidence interval of the provincial average background heat flow is qo=57.25±24.8 mW/m^2 and the PFB-positive- and RSB-negative-contribution coefficients are a=14.8-71.9 mW/m^2 and c=0-25.6 mW/m^2, respectively. The concepts of PFB and RSB effects and the heat flow expression suggested provide a new choice of the approach to the quantitative description of the characteristics of heat flow distribution in continent and their physical mechanisms.展开更多
The study of the netlike earthquake distribution indicates that in the central-eastern part of Asia continent there are two network systems: the central-eastern Asia system and the southeastern China system.As interpr...The study of the netlike earthquake distribution indicates that in the central-eastern part of Asia continent there are two network systems: the central-eastern Asia system and the southeastern China system.As interpreted by the multilayer tectonic model,they might be a manifestation of the plastic-flow network systems in the lower lithosphere,including the lower crust and the mantle lid.Each network system is enclosed by different types of boundaries,including one driving boundary and some constraining and releasing boundaries.The two plastic-flow network systems with the Himalayan and Taiwan arcs as their driving boundaries play the role of controlling the intraplate tectonic deformation,stress field,seismicity,and subdivision of tectonic units.展开更多
The slip-line method is one of the fundamental solving methods for the plastic deformation. However, the existing slip-fine theory, strictly speaking, is only confined to solving a rigid-perfectly plastic material und...The slip-line method is one of the fundamental solving methods for the plastic deformation. However, the existing slip-fine theory, strictly speaking, is only confined to solving a rigid-perfectly plastic material under the plane strain conditions. Although some authors (such as Shield) have made an extension to the axisymmetdeally plastic problems with the aid of the "perfect plasticity" hypothesis, more axisymmetric problems still cannot be solved by the method. For this reason, in the present note, a new hypothesis is proposed for analysing the axisymmetric plastic problems, and then, according to this hypothesis,展开更多
Warm tensile tests for aluminum alloy 7022 sheet are held at different temperatures and strain rates. The range of temperature is 293-773 K and that of the strain rate is 0. 001-0.1 s^-1. The warm tensile properties,r...Warm tensile tests for aluminum alloy 7022 sheet are held at different temperatures and strain rates. The range of temperature is 293-773 K and that of the strain rate is 0. 001-0.1 s^-1. The warm tensile properties,relations among temperature,strain rate,and the flow stress are discussed. Constitutive equations under the warm tension are obtained based on revised Hooke law and Grosman equation. It is concluded that flow stress declines with the increase of the temperature and the decrease of the strain rates. The elongation percentage increases with the increase of the temperature and the decrease of strain rate.展开更多
On the basis of continuum mechanics and the Mori-Tanaka mean field theory, a micro-mechanical flow stress model that considered both the transformation-induced plasticity (TRIP) effect and the inelastic strain recov...On the basis of continuum mechanics and the Mori-Tanaka mean field theory, a micro-mechanical flow stress model that considered both the transformation-induced plasticity (TRIP) effect and the inelastic strain recovery behavior of TRIP multiphase steels was presented. The relation between the volume fraction of constituent phases and plastic strain was introduced to characterize the transformation-induced plasticity effect of TRIP steels. Loading-unloading-reloading uniaxial tension tests of TRIP600 steel were carried out and the strain recovery behavior after unloading was analyzed. From the experimental data, an empirical elastic modulus expression is extracted to characterize the inelastic strain recovery. A comparison of the predicted flow stress with the experimental data shows a good agreement. The mechanism of the transformation-induced plasticity effect and the inelastic recovery effect acting on the flow stress is also discussed in detail.展开更多
基金the support from National Natural Science Foundation of China (Grant Nos. 11702137 and U2141246)。
文摘The plastic flow behavior of the rotating band material is investigated in this paper. The rotating band material is processed from H96 brass alloy, which is hardened to a much higher yield strength compared to the annealed one. The dynamically uniaxial compression behavior of the material is tested using the split Hopkinson pressure bar(SHPB) with temperature and strain rate ranging from 297 to 1073 K and500 to 3000 s^(-1), respectively, and a phenomenological plastic flow stress model is developed to describe the mechanical behavior of the material. The material is found to present noticeable temperature sensitivity and weak strain-rate sensitivity. The construction of the plastic flow stress model has two steps. Firstly, three univariate stress functions, taking plastic strain, plastic strain rate and temperature as independent variable, respectively, are proposed by fixing the other two variables. Then, as the three univariate functions describe the special cases of flow stress behavior under various conditions, the principle of stress compatibility is adopted to obtain the complete flow stress function. The numerical results show that the proposed plastic flow stress model is more suitable for the rotating band material than the existing well-known models.
文摘The homogeneous plastic flow of fully amorphous and partially crystallized Zr(41.2)Ti(13.8)Cu(12.5)Ni(10)Be(22.5) bulk metallic glass (Vitl) has been investigated by compression tests at high temperatures in supercooled liquid region. Experimental results show that at sufficiently low strain rates, the supercooled liquid of the fully amorphous alloy reveals Newtonian flow with a linear relationship between the flow stress and strain rate. As the strain rate is increased, a transition from linear Newtonian to nonlinear flow is detected, which can be explained by the transition state theory. Over the entire strain rate interval investigated, however, only nonlinear flow is present in the partially crystallized alloy, and the flow stress for each strain rate is much higher. It is found that the strain rate-stress relationship for the partially crystaltized alloy at the given temperature of 646 K also obeys the sinh law derived from the transition state theory, similar to that of the initial homogeneous amorphous alloy. Thus, it is proposed that the flow behavior of the nanocrystalline/amorphous composite at 646 K is mainly controlled by the viscous flow of the remaining supercooled liquid.
基金The project supported by the National Natural Science Foundation of China (10121202) and Ministry of Education,China (20020003023 and Key Grant Project 0306)
文摘Recent studies have shown that the size of microvoids has a significant effect on the void growth rate.The purpose of this paper is to explore whether the void size effect can influence the plastic flow localization in ductile materials.We have used the extended Gurson's dilatational plasticity theory,which accounts for the void size effect,to study the plastic flow localization in porous solids with long cylindrical voids.The localization model of Rice is adopted,in which the material inside the band may display a different response from that outside the band at the incipient plastic flow localization.The present study shows that it has little effect on the shear band angle.
文摘Photoplastic experiment were conducted with connecting rods of AX100 motorcycle engine during finish forging to investigate material plastic flow law of long -axis forgings with comples geometrie’s by observing
基金Projects(50875059,50774026) supported by the National Natural Science Foundation of ChinaProject(20070420023) supported by China Postdoctoral Science FoundationProject (2008AA03A239) supported by High-tech Research and Development Program of China
文摘The semi-solid filling-plastic flowing integrated forging process of semi-solid 6061 Al alloy was simulated by commercial finite element software DEFORM-3D.Temperature,fluid and stress-strain fields were considered in numerical simulation.The simulation results show that the plastic deformation of billet of the ends is higher than that of billet in the straight cylinder.The value of plastic deformation varies with loading mode and plastic deformation fields at the stage of increasing pressure to constant value.When the thixoforging experiments were performed at 590 ℃,15 mm/s of punch velocity and 46 MPa of pressure side urn,it gets the filling wholly and dense internal organization of semi-solid thixoforging parts is gotten.Finite element analysis results are compatible with experimental ones.
基金We acknowledge the funding from the National Key R&D Program(No.2018YFB 2000301)the National Natural Science Foundation of China(No.U1737204)the Foundation for Innovative Research Groups of the National Natural Science Foundation of China(No.51571003).
文摘The thermal shock of subsurface material with shear instability and severe plastic flow during scuffing was investigated.The scuffing damage of M50 steel was tested using a high-speed rolling-sliding contact test rig,and the transient temperature during scuffing was calculated using the Fourier transform method considering the effects of both frictional heat and plastic work.The results show that a thermal shock with a rapid rise and subsequent rapid decrease in the contact temperature is generated in the subsurface layers.The frictional power intensity generates a high temperature rise,leading to the austenitization of the subsurface material.Consequently,the plastic flow is generated in the subsurface layer under the high shear stress,and the resulting plastic strain energy generates a further temperature increase.Subsequently,a rapid decrease in the contact temperature quenches the material,resulting in clear shear slip bands and retained austenite in the subsurface layers of the M50 steel.
基金supported by the NSFC-NSAF joint fund(Grant No.U1730118)the Science Challenge Project(Grant No.JCKY2016212A502)+1 种基金the National Natural Science Foundation of China(Grant No.12101029)Postdoctoral Science Foundation of China(Grant No.2020M680283).
文摘In this work,a genuinely two-dimensional HLL-type approximate Riemann solver is proposed for hypo-elastic plastic flow.To consider the effects of wave interaction from both the x-and y-directions,a corresponding 2D elastic-plastic approximate solver is constructed with elastic-plastic transition embedded.The resultant numerical flux combines one-dimensional numerical flux in the central region of the cell edge and two-dimensional flux in the cell vertex region.The stress is updated separately by using the velocity obtained with the above approximate Riemann solver.Several numerical tests,including genuinely two-dimensional examples,are presented to test the performances of the proposed method.The numerical results demonstrate the credibility of the present 2D approximate Riemann solver.
基金This project (No. 49070196) is funded by the National Science Foundation of China.
文摘In a large area of the east—central Asian continent there is a unified seismic network system composed of two families of large—seismic belts that intersect conjugately. Such a seismic network in the middle—upper crust is actually a response to the plastic flow network in the lower lithosphere including the lower crust and lithospheric mantle. The existence of the unified plastic flow system confirms that the driving force for intraplate tectonic deformation results mainly from the compression of the India plate, while the long-range transmission of the force is carried out chiefly by means of plastic flow. The plastic flow network has a control over the intraplate tectonic deformation.
基金Project supported by the National Natural Science Foundation of China(Nos.90815001and11072064)Key Project of Guangxi Science and Technology Lab Center(No.LGZX201101)
文摘An experimental analysis on the subsequent yield-surfaces evolution using multiple specimens is presented for a 45 steel after a prescribed pre-strain loading in three different directions respectively, and the yielding is defined by a designated offsetting strain. The size of the subsequent yield surface is found smaller than the initial yield surface; the negative cross effects are observed in the normal loading direction, its shape is not a Mises circle but has a rather blunt nose in loading direction and flat in the opposite. These results strongly depend on the loading path and the prescribed offset plastic strain. The plastic flow direction to the subsequent yield surface is investigated, and it is found that the plastic flow direction deviates from the normal flow rule. The deviation differs from preloading case to preloading case. And the plastic flow direction would have a larger deviation from the normal of the yield surface, if the subsequent yield was defined by a smaller offset strain. Furthermore, the experiments are simulated using the Chaboche model, and the results show that it can rationally predict yield-surface only when yield is defined by a fairly large offset strain.
文摘It has not been a simple matter to obtain a sound extension of the classical J2 flow theory of plasticity that incorporates a dependence on plastic strain gradients and that is capable of capturing size-dependent behaviour of metals at the micron scale. Two classes of basic extensions of classical J2 theory have been proposed: one with increments in higher order stresses related to increments of strain gradients and the other characterized by the higher order stresses themselves expressed in terms of increments of strain gradients. The theories proposed by Muhlhans and Aifantis in 1991 and Fleck and Hutchinson in 2001 are in the first class, and, as formulated, these do not always satisfy thermodynamic requirements on plastic dissipation. On the other hand, theories of the second class proposed by Gudmundson in 2004 and Gurtin and Anand in 2009 have the physical deficiency that the higher order stress quantities can change discontinuously for bodies subject to arbitrarily small load changes. The present paper lays out this background to the quest for a sound phenomenological extension of the rateindependent J2 flow theory of plasticity to include a de- pendence on gradients of plastic strain. A modification of the Fleck-Hutchinson formulation that ensures its thermo- dynamic integrity is presented and contrasted with a comparable formulation of the second class where in the higher or- der stresses are expressed in terms of the plastic strain rate. Both versions are constructed to reduce to the classical J2 flow theory of plasticity when the gradients can be neglected and to coincide with the simpler and more readily formulated J2 deformation theory of gradient plasticity for deformation histories characterized by proportional straining.
文摘1 Previous study and geological background Sphene is a common accessory mineral in igneous and metamorphic rocks. It is usuallynot deformed because it is more competent than the major rock-forming minerals, such asquartz, feldspars and mica. Little is known about the plastic property of sphene.
文摘Based on the heat flow data published in 1990 and 2001, a study of the factors influencing the terrestrial heat flow distribution in the China continent and its quantitative expression is carried out using the "Netlike Plastic-Flow" continental dynamics model and the methods of statistic analysis and optimum fitting. The result indicates that the factors influencing the heat flow distribution is classified into two groups, i.e. background and tectonic ones, in which the former mainly involves the non- uniform distribution of mantle heat flow, heat production of radioactive dements in the crust, heattransfer media and hydrothermal circulation, while the latter mainly involves plastic-flow networks and relatively-stable blocks. The plastic-flow network is a manifestation of shear localization in the netlike plastic-flow process in the lower lithosphere, which is composed of two sets of plastic-flow belts (PFBs) intersecting each other and, as one of the basic action regimes, controls the intraplate tectonic deformation. Relatively stable blocks (RSBs), which are the tectonic units with relatively-high viscosities existing in the netlike plastic-flow field, as one of the principal origins, result in the development of large-seale compressional basins. PFB and RSB, as the active and quiet states of tectonic deformation, give rise to the higher and lower heat flow values, respectivdy. The provincial average heat flow in continent can be estimated using the expression qav = q0 + a Pbt-c Pbk, where the three terms of the right side are background heat flow, PFB-positive contribution and RSB-negative contribution, Pbt and Pbk are the PFB- and RSB-coverage ratios, respectively, a is the coefficient of PFB- positive contribution depending mainly on the strain in the lower lithosphere, and c is the coefficient of RSB-negative contribution related mainly to the thickness of the lithosphere, the aseismic-area ratio and the tectonic age. For the major portion of the China continent excluding some of the southeastern region of China, the confidence interval of the provincial average background heat flow is qo=57.25±24.8 mW/m^2 and the PFB-positive- and RSB-negative-contribution coefficients are a=14.8-71.9 mW/m^2 and c=0-25.6 mW/m^2, respectively. The concepts of PFB and RSB effects and the heat flow expression suggested provide a new choice of the approach to the quantitative description of the characteristics of heat flow distribution in continent and their physical mechanisms.
基金This Project was sponsored by the National Natural Science Foundation of China under No.49070196.
文摘The study of the netlike earthquake distribution indicates that in the central-eastern part of Asia continent there are two network systems: the central-eastern Asia system and the southeastern China system.As interpreted by the multilayer tectonic model,they might be a manifestation of the plastic-flow network systems in the lower lithosphere,including the lower crust and the mantle lid.Each network system is enclosed by different types of boundaries,including one driving boundary and some constraining and releasing boundaries.The two plastic-flow network systems with the Himalayan and Taiwan arcs as their driving boundaries play the role of controlling the intraplate tectonic deformation,stress field,seismicity,and subdivision of tectonic units.
文摘The slip-line method is one of the fundamental solving methods for the plastic deformation. However, the existing slip-fine theory, strictly speaking, is only confined to solving a rigid-perfectly plastic material under the plane strain conditions. Although some authors (such as Shield) have made an extension to the axisymmetdeally plastic problems with the aid of the "perfect plasticity" hypothesis, more axisymmetric problems still cannot be solved by the method. For this reason, in the present note, a new hypothesis is proposed for analysing the axisymmetric plastic problems, and then, according to this hypothesis,
基金Supported by the National Natural Science Foundation of China (50772095)the Graduate Innovation Foundation of Jiangsu Province (CX09B-073Z)~~
文摘Warm tensile tests for aluminum alloy 7022 sheet are held at different temperatures and strain rates. The range of temperature is 293-773 K and that of the strain rate is 0. 001-0.1 s^-1. The warm tensile properties,relations among temperature,strain rate,and the flow stress are discussed. Constitutive equations under the warm tension are obtained based on revised Hooke law and Grosman equation. It is concluded that flow stress declines with the increase of the temperature and the decrease of the strain rates. The elongation percentage increases with the increase of the temperature and the decrease of strain rate.
基金supported by the National Natural Science Foundation of China (No.50705067)the Ph.D. Programs Foundation of the Ministry of Education of China (No.20070247013)
文摘On the basis of continuum mechanics and the Mori-Tanaka mean field theory, a micro-mechanical flow stress model that considered both the transformation-induced plasticity (TRIP) effect and the inelastic strain recovery behavior of TRIP multiphase steels was presented. The relation between the volume fraction of constituent phases and plastic strain was introduced to characterize the transformation-induced plasticity effect of TRIP steels. Loading-unloading-reloading uniaxial tension tests of TRIP600 steel were carried out and the strain recovery behavior after unloading was analyzed. From the experimental data, an empirical elastic modulus expression is extracted to characterize the inelastic strain recovery. A comparison of the predicted flow stress with the experimental data shows a good agreement. The mechanism of the transformation-induced plasticity effect and the inelastic recovery effect acting on the flow stress is also discussed in detail.