PLATZ is a novel zinc finger DNA-binding protein that plays an important role in regulating plant growth and development and resisting abiotic stress.However,there has been very little research on the function of this...PLATZ is a novel zinc finger DNA-binding protein that plays an important role in regulating plant growth and development and resisting abiotic stress.However,there has been very little research on the function of this family gene in tomatoes,which limits its application in germplasm resource improvement.Therefore,the PLATZ gene family was identified and analyzed in tomato,and its roles were predicted and verified to provide a basis for in-depth research on SlPLATZ gene function.In this study,the PLATZ family members of tomato were identified in the whole genome,and 19 SlPLATZ genes were obtained.Functional prediction was conducted based on gene and promoter structure analysis and RNA-seq-based expression pattern analysis.SlPLATZ genes that responded significantly under different abiotic stresses or were significantly differentially expressed among multiple tissues were screened as functional gene resources.SlPLATZ17 was selected for functional verification by experiment-based analysis.The results showed that the downregulation of SlPLATZ17 gene expression reduced the drought and salt tolerance of tomato plants.Tomato plants overexpressing SlPLATZ17 had larger flower sizes and long,thin petals,adjacent petals were not connected at the base,and the stamen circumference was smaller.This study contributes to understanding the functions of the SlPLATZ family in tomato and provides a reference for functional gene screening.展开更多
Plant AT-rich sequence and zinc binding(PLATZ)transcription factors are a class of plant specific zincdependent DNA-binding proteins that function in abiotic stress response and plant development.In this study,31 GmPL...Plant AT-rich sequence and zinc binding(PLATZ)transcription factors are a class of plant specific zincdependent DNA-binding proteins that function in abiotic stress response and plant development.In this study,31 GmPLATZ genes were identified in soybean.GmPLATZ17 was down-regulated by drought and exogenous abscisic acid.Transgenic Arabidopsis and soybean hairy roots overexpressing GmPLATZ17 showed drought sensitivity and inhibition of stress-associated gene transcription.In contrast,suppressed expression of GmPLATZ17 led to increased drought tolerance in transgenic soybean hairy roots.The GmPLATZ17 protein was verified to interact physically with the GmDREB5 transcription factor,and overexpression of GmDREB5 increased drought tolerance in soybean hairy roots.Interaction of GmPLATZ17 with GmDREB5 was shown to interfere with the DRE-binding activity of GmDREB5,suppressing downstream stress-associated gene expression.These results show that GmPLATZ17 inhibits drought tolerance by interacting with GmDREB5.This study sheds light on PLATZ transcription factors and the function of GmPLATZ17 in regulating drought sensitivity.展开更多
Plant AT-rich sequence and zinc-binding protein(PLATZ)is a plant transcription factor that has been studied in corn.PLATZ can non-specifically bind to sequences rich in A/T bases to induce transcriptional repression.I...Plant AT-rich sequence and zinc-binding protein(PLATZ)is a plant transcription factor that has been studied in corn.PLATZ can non-specifically bind to sequences rich in A/T bases to induce transcriptional repression.It is involved in the regulation of dehydration tolerance in seeds.In this study,we performed bioinformatics analysis to identify and characterize wheat PLATZ(TaPLATZ)genes.We identified 49 wheat PLATZ genes by searching the wheat genome by using known PLATZ gene sequences from rice,Arabidopsis,and maize.Phylogenetic analysis on PLATZ gene sequences from different species was performed.We found that PLATZs could be divided into three groups.The chromosome(chr)distribution analysis revealed that the 49 identified wheat PLATZ genes are distributed in 15 chrs.Gene structure and motif analyses indicated that most PLATZ genes possess conserved exon/intron arrangements and motif compositions.Our analysis of transcriptional data indicated that several wheat PLATZ genes may play an important role in abiotic stress resistance given that they are expressed under salt stress.The results of qRT-PCR further confirmed that TaPLATZ is involved in plant abiotic stress and is also related to the cell differentiation of plant tissues.Our results lay the foundation for further studies on the function of the wheat PLATZ gene family.展开更多
基金support from the National Natural Science Foundation of China(32102390 and 32072589)the China Agriculture Research System(CARS-23-A11)+1 种基金the Heilongjiang Provincial Natural Science Foundation of China(YQ2021C013)the Northeast Agricultural University Scholars Program(20XG28),China。
文摘PLATZ is a novel zinc finger DNA-binding protein that plays an important role in regulating plant growth and development and resisting abiotic stress.However,there has been very little research on the function of this family gene in tomatoes,which limits its application in germplasm resource improvement.Therefore,the PLATZ gene family was identified and analyzed in tomato,and its roles were predicted and verified to provide a basis for in-depth research on SlPLATZ gene function.In this study,the PLATZ family members of tomato were identified in the whole genome,and 19 SlPLATZ genes were obtained.Functional prediction was conducted based on gene and promoter structure analysis and RNA-seq-based expression pattern analysis.SlPLATZ genes that responded significantly under different abiotic stresses or were significantly differentially expressed among multiple tissues were screened as functional gene resources.SlPLATZ17 was selected for functional verification by experiment-based analysis.The results showed that the downregulation of SlPLATZ17 gene expression reduced the drought and salt tolerance of tomato plants.Tomato plants overexpressing SlPLATZ17 had larger flower sizes and long,thin petals,adjacent petals were not connected at the base,and the stamen circumference was smaller.This study contributes to understanding the functions of the SlPLATZ family in tomato and provides a reference for functional gene screening.
基金supported by the National Natural Science Foundation of China(31871624)the Agricultural Science and Technology Innovation Program(CAAS-ZDRW202109 and CAAS-ZDRW202002)the Central Public-interest Scientific Institution Basal Research Fund.
文摘Plant AT-rich sequence and zinc binding(PLATZ)transcription factors are a class of plant specific zincdependent DNA-binding proteins that function in abiotic stress response and plant development.In this study,31 GmPLATZ genes were identified in soybean.GmPLATZ17 was down-regulated by drought and exogenous abscisic acid.Transgenic Arabidopsis and soybean hairy roots overexpressing GmPLATZ17 showed drought sensitivity and inhibition of stress-associated gene transcription.In contrast,suppressed expression of GmPLATZ17 led to increased drought tolerance in transgenic soybean hairy roots.The GmPLATZ17 protein was verified to interact physically with the GmDREB5 transcription factor,and overexpression of GmDREB5 increased drought tolerance in soybean hairy roots.Interaction of GmPLATZ17 with GmDREB5 was shown to interfere with the DRE-binding activity of GmDREB5,suppressing downstream stress-associated gene expression.These results show that GmPLATZ17 inhibits drought tolerance by interacting with GmDREB5.This study sheds light on PLATZ transcription factors and the function of GmPLATZ17 in regulating drought sensitivity.
基金This work was supported by the“National Key R&D Program of China(2018YFD0200500)”“Open Project Program of Engineering Research Center of Ecology and Agricultural Use of Wetland,Ministry of Education(KF201802)”“Open Project Program of Shanxi Key Laboratory of Integrated Pest Management in Agriculture,Institute of Plant Protection(YHSW2018002)”.
文摘Plant AT-rich sequence and zinc-binding protein(PLATZ)is a plant transcription factor that has been studied in corn.PLATZ can non-specifically bind to sequences rich in A/T bases to induce transcriptional repression.It is involved in the regulation of dehydration tolerance in seeds.In this study,we performed bioinformatics analysis to identify and characterize wheat PLATZ(TaPLATZ)genes.We identified 49 wheat PLATZ genes by searching the wheat genome by using known PLATZ gene sequences from rice,Arabidopsis,and maize.Phylogenetic analysis on PLATZ gene sequences from different species was performed.We found that PLATZs could be divided into three groups.The chromosome(chr)distribution analysis revealed that the 49 identified wheat PLATZ genes are distributed in 15 chrs.Gene structure and motif analyses indicated that most PLATZ genes possess conserved exon/intron arrangements and motif compositions.Our analysis of transcriptional data indicated that several wheat PLATZ genes may play an important role in abiotic stress resistance given that they are expressed under salt stress.The results of qRT-PCR further confirmed that TaPLATZ is involved in plant abiotic stress and is also related to the cell differentiation of plant tissues.Our results lay the foundation for further studies on the function of the wheat PLATZ gene family.