An observer-based adaptive backstepping boundary control is proposed for vibration control of flexible offshore riser systems with unknown nonlinear input dead zone and uncertain environmental disturbances.The control...An observer-based adaptive backstepping boundary control is proposed for vibration control of flexible offshore riser systems with unknown nonlinear input dead zone and uncertain environmental disturbances.The control algorithm can update the control law online through real-time data to make the controller adapt to the environment and improve the control precision.Specifically,based on the adaptive backstepping framework,virtual control laws and Lyapunov functions are designed for each subsystem.Three direction interference observers are designed to track the timevarying boundary disturbance.On this basis,the inverse of the dead zone and linear state transformation are used to compensate for the original system and eliminate the adverse effects of the dead zone.In addition,the stability of the closed-loop system is proven by Lyapunov stability theory.All the system states are bounded,and the vibration offset of the riser converges to a small area of the initial position.Finally,four examples of flexible marine risers are simulated in MATLAB to verify the effectiveness of the proposed controller.展开更多
This paper presents a risk-informed data-driven safe control design approach for a class of stochastic uncertain nonlinear discrete-time systems.The nonlinear system is modeled using linear parameter-varying(LPV)syste...This paper presents a risk-informed data-driven safe control design approach for a class of stochastic uncertain nonlinear discrete-time systems.The nonlinear system is modeled using linear parameter-varying(LPV)systems.A model-based probabilistic safe controller is first designed to guarantee probabilisticλ-contractivity(i.e.,stability and invariance)of the LPV system with respect to a given polyhedral safe set.To obviate the requirement of knowing the LPV system model and to bypass identifying its open-loop model,its closed-loop data-based representation is provided in terms of state and scheduling data as well as a decision variable.It is shown that the variance of the closedloop system,as well as the probability of safety satisfaction,depends on the decision variable and the noise covariance.A minimum-variance direct data-driven gain-scheduling safe control design approach is presented next by designing the decision variable such that all possible closed-loop system realizations satisfy safety with the highest confidence level.This minimum-variance approach is a control-oriented learning method since it minimizes the variance of the state of the closed-loop system with respect to the safe set,and thus minimizes the risk of safety violation.Unlike the certainty-equivalent approach that results in a risk-neutral control design,the minimum-variance method leads to a risk-averse control design.It is shown that the presented direct risk-averse learning approach requires weaker data richness conditions than existing indirect learning methods based on system identification and can lead to a lower risk of safety violation.Two simulation examples along with an experimental validation on an autonomous vehicle are provided to show the effectiveness of the presented approach.展开更多
This paper studies the problem of time-varying formation control with finite-time prescribed performance for nonstrict feedback second-order multi-agent systems with unmeasured states and unknown nonlinearities.To eli...This paper studies the problem of time-varying formation control with finite-time prescribed performance for nonstrict feedback second-order multi-agent systems with unmeasured states and unknown nonlinearities.To eliminate nonlinearities,neural networks are applied to approximate the inherent dynamics of the system.In addition,due to the limitations of the actual working conditions,each follower agent can only obtain the locally measurable partial state information of the leader agent.To address this problem,a neural network state observer based on the leader state information is designed.Then,a finite-time prescribed performance adaptive output feedback control strategy is proposed by restricting the sliding mode surface to a prescribed region,which ensures that the closed-loop system has practical finite-time stability and that formation errors of the multi-agent systems converge to the prescribed performance bound in finite time.Finally,a numerical simulation is provided to demonstrate the practicality and effectiveness of the developed algorithm.展开更多
Aiming at the tracking problem of a class of discrete nonaffine nonlinear multi-input multi-output(MIMO) repetitive systems subjected to separable and nonseparable disturbances, a novel data-driven iterative learning ...Aiming at the tracking problem of a class of discrete nonaffine nonlinear multi-input multi-output(MIMO) repetitive systems subjected to separable and nonseparable disturbances, a novel data-driven iterative learning control(ILC) scheme based on the zeroing neural networks(ZNNs) is proposed. First, the equivalent dynamic linearization data model is obtained by means of dynamic linearization technology, which exists theoretically in the iteration domain. Then, the iterative extended state observer(IESO) is developed to estimate the disturbance and the coupling between systems, and the decoupled dynamic linearization model is obtained for the purpose of controller synthesis. To solve the zero-seeking tracking problem with inherent tolerance of noise,an ILC based on noise-tolerant modified ZNN is proposed. The strict assumptions imposed on the initialization conditions of each iteration in the existing ILC methods can be absolutely removed with our method. In addition, theoretical analysis indicates that the modified ZNN can converge to the exact solution of the zero-seeking tracking problem. Finally, a generalized example and an application-oriented example are presented to verify the effectiveness and superiority of the proposed process.展开更多
Since backlash nonlinearity is inevitably existing in actuators for bidirectional stabilization system of allelectric tank,it behaves more drastically in high maneuvering environments.In this work,the accurate trackin...Since backlash nonlinearity is inevitably existing in actuators for bidirectional stabilization system of allelectric tank,it behaves more drastically in high maneuvering environments.In this work,the accurate tracking control for bidirectional stabilization system of moving all-electric tank with actuator backlash and unmodeled disturbance is solved.By utilizing the smooth adaptive backlash inverse model,a nonlinear robust adaptive feedback control scheme is presented.The unknown parameters and unmodelled disturbance are addressed separately through the derived parametric adaptive function and the continuous nonlinear robust term.Because the unknown backlash parameters are updated via adaptive function and the backlash effect can be suppressed successfully by inverse operation,which ensures the system stability.Meanwhile,the system disturbance in the high maneuverable environment can be estimated with the constructed adaptive law online improving the engineering practicality.Finally,Lyapunov-based analysis proves that the developed controller can ensure the tracking error asymptotically converges to zero even with unmodeled disturbance and unknown actuator backlash.Contrast co-simulations and experiments illustrate the advantages of the proposed approach.展开更多
This paper concerns ultimately bounded output-feedback control problems for networked systems with unknown nonlinear dynamics. Sensor-to-observer signal transmission is facilitated over networks that has communication...This paper concerns ultimately bounded output-feedback control problems for networked systems with unknown nonlinear dynamics. Sensor-to-observer signal transmission is facilitated over networks that has communication constraints.These transmissions are carried out over an unreliable communication channel. In order to enhance the utilization rate of measurement data, a buffer-aided strategy is novelly employed to store historical measurements when communication networks are inaccessible. Using the neural network technique, a novel observer-based controller is introduced to address effects of signal transmission behaviors and unknown nonlinear dynamics.Through the application of stochastic analysis and Lyapunov stability, a joint framework is constructed for analyzing resultant system performance under the introduced controller. Subsequently, existence conditions for the desired output-feedback controller are delineated. The required parameters for the observerbased controller are then determined by resolving some specific matrix inequalities. Finally, a simulation example is showcased to confirm method efficacy.展开更多
In this paper, a model predictive control(MPC)framework is proposed for finite-time stabilization of linear and nonlinear discrete-time systems subject to state and control constraints. The proposed MPC framework guar...In this paper, a model predictive control(MPC)framework is proposed for finite-time stabilization of linear and nonlinear discrete-time systems subject to state and control constraints. The proposed MPC framework guarantees the finite-time convergence property by assigning the control horizon equal to the dimension of the overall system, and only penalizing the terminal cost in the optimization, where the stage costs are not penalized explicitly. A terminal inequality constraint is added to guarantee the feasibility and stability of the closed-loop system.Initial feasibility can be improved via augmentation. The finite-time convergence of the proposed MPC is proved theoretically,and is supported by simulation examples.展开更多
Parking difficulties have become a social issue that people have to solve.Automated parking system is practicable for quick par operations without a driver which can also greatly reduces the probability of parking acc...Parking difficulties have become a social issue that people have to solve.Automated parking system is practicable for quick par operations without a driver which can also greatly reduces the probability of parking accidents.The paper proposes a Lyapunov-based nonlinear model predictive controller embedding an instructable solution which is generated by the modified rear-wheel feedback method(RF-LNMPC)in order to improve the overall path tracking accuracy in parking conditions.Firstly,A discrete-time RF-LNMPC considering the position and attitude of the parking vehicle is proposed to increase the success rate of automated parking effectively.Secondly,the RF-LNMPC problem with a multi-objective cost function is solved by the Interior-Point Optimization,of which the iterative initial values are described as the instructable solutions calculated by combining modified rear-wheel feedback to improve the performance of local optimal solution.Thirdly,the details on the computation of the terminal constraint and terminal cost for the linear time-varying case is presented.The closed-loop stability is verified via Lyapunov techniques by considering the terminal constraint and terminal cost theoretically.Finally,the proposed RF-LNMPC is implemented on a selfdriving Lincoln MKZ platform and the experiment results have shown improved performance in parallel and vertical parking conditions.The Monte Carlo analysis also demonstrates good stability and repeatability of the proposed method which can be applied in practical use in the near future.展开更多
With the continuous breakthrough in information technology and its integration into practical applications, industrial digital twins are expected to accelerate their development in the near future. This paper studies ...With the continuous breakthrough in information technology and its integration into practical applications, industrial digital twins are expected to accelerate their development in the near future. This paper studies various control strategies for digital twin systems from the viewpoint of practical applications.To make full use of advantages of digital twins for control systems, an architecture of digital twin control systems, adaptive model tracking scheme, performance prediction scheme, performance retention scheme, and fault tolerant control scheme are proposed. Those schemes are detailed to deal with different issues on model tracking, performance prediction, performance retention, and fault tolerant control of digital twin systems. Also, the stability of digital twin control systems is analysed. The proposed schemes for digital twin control systems are illustrated by examples.展开更多
Battery energy storage systems(BESSs)are widely used in smart grids.However,power consumed by inner impedance and the capacity degradation of each battery unit become particularly severe,which has resulted in an incre...Battery energy storage systems(BESSs)are widely used in smart grids.However,power consumed by inner impedance and the capacity degradation of each battery unit become particularly severe,which has resulted in an increase in operating costs.The general economic dispatch(ED)algorithm based on marginal cost(MC)consensus is usually a proportional(P)controller,which encounters the defects of slow convergence speed and low control accuracy.In order to solve the distributed ED problem of the isolated BESS network with excellent dynamic and steady-state performance,we attempt to design a proportional integral(PI)controller with a reset mechanism(PI+R)to asymptotically promote MC consensus and total power mismatch towards 0 in this paper.To be frank,the integral term in the PI controller is reset to 0 at an appropriate time when the proportional term undergoes a zero crossing,which accelerates convergence,improves control accuracy,and avoids overshoot.The eigenvalues of the system under a PI+R controller is well analyzed,ensuring the regularity of the system and enabling the reset mechanism.To ensure supply and demand balance within the isolated BESSs,a centralized reset mechanism is introduced,so that the controller is distributed in a flow set and centralized in a jump set.To cope with Zeno behavior and input delay,a dwell time that the system resides in a flow set is given.Based on this,the system with input delays can be reduced to a time-delay free system.Considering the capacity limitation of the battery,a modified MC scheme with PI+R controller is designed.The correctness of the designed scheme is verified through relevant simulations.展开更多
This work proposes an event-triggered adaptive control approach for a class of uncertain nonlinear systems under irregular constraints.Unlike the constraints considered in most existing papers,here the external irregu...This work proposes an event-triggered adaptive control approach for a class of uncertain nonlinear systems under irregular constraints.Unlike the constraints considered in most existing papers,here the external irregular constraints are considered and a constraints switching mechanism(CSM)is introduced to circumvent the difficulties arising from irregular output constraints.Based on the CSM,a new class of generalized barrier functions are constructed,which allows the control results to be independent of the maximum and minimum values(MMVs)of constraints and thus extends the existing results.Finally,we proposed a novel dynamic constraint-driven event-triggered strategy(DCDETS),under which the stress on signal transmission is reduced greatly and no constraints are violated by making a dynamic trade-off among system state,external constraints,and inter-execution intervals.It is proved that the system output is driven to close to the reference trajectory and the semi-global stability is guaranteed under the proposed control scheme,regardless of the external irregular output constraints.Simulation also verifies the effectiveness and benefits of the proposed method.展开更多
Offshore wind farms are becoming increasingly distant from onshore centralized control centers,and the communication delays between them inevitably introduce time delays in the measurement signal of the primary freque...Offshore wind farms are becoming increasingly distant from onshore centralized control centers,and the communication delays between them inevitably introduce time delays in the measurement signal of the primary frequency control.This causes a deterioration in the performance of the primary frequency control and,in some cases,may even result in frequency instability within the power system.Therefore,a frequency response model that incorporates communication delays was established for power systems that integrate offshore wind power.The Padéapproximation was used to model the time delays,and a linearized frequency response model of the power system was derived to investigate the frequency stability under different time delays.The influences of the wind power proportion and frequency control parameters on the system frequency stability were explored.In addition,a Smith delay compensation control strategy was devised to mitigate the effects of communication delays on the system frequency dynamics.Finally,a power system incorporating offshore wind power was constructed using the MATLAB/Simulink platform.The simulation results demonstrate the effectiveness and robustness of the proposed delay compensation control strategy.展开更多
In the fiber winding process,strong disturbance,uncertainty,strong coupling,and fiber friction complicate the winding constant tension control.In order to effectively reduce the influence of these problems on the tens...In the fiber winding process,strong disturbance,uncertainty,strong coupling,and fiber friction complicate the winding constant tension control.In order to effectively reduce the influence of these problems on the tension output,this paper proposed a tension fluctuation rejection strategy based on feedforward compensation.In addition to the bias harmonic curve of the unknown state,the tension fluctuation also contains the influence of bounded noise.A tension fluctuation observer(TFO)is designed to cancel the uncertain periodic signal,in which the frequency generator is used to estimate the critical parameter information.Then,the fluctuation signal is reconstructed by a third-order auxiliary filter.The estimated signal feedforward compensates for the actual tension fluctuation.Furthermore,a time-varying parameters fractional-order PID controller(TPFOPID)is realized to attenuate the bounded noise in the fluctuation.Finally,TPFOPID is enhanced by TFO and applied to control a tension control system considering multi-source disturbances.The stability of the method is analyzed by using the Lyapunov theorem.Finally,numerical simulations verify that the proposed scheme improves the tracking ability and robustness of the system in response to tension fluctuations.展开更多
For the n-qubit stochastic open quantum systems,based on the Lyapunov stability theorem and LaSalle’s invariant set principle,a pure state switching control based on on-line estimated state feedback(short for OQST-SF...For the n-qubit stochastic open quantum systems,based on the Lyapunov stability theorem and LaSalle’s invariant set principle,a pure state switching control based on on-line estimated state feedback(short for OQST-SFC)is proposed to realize the state transition the pure state of the target state including eigenstate and superposition state.The proposed switching control consists of a constant control and a control law designed based on the Lyapunov method,in which the Lyapunov function is the state distance of the system.The constant control is used to drive the system state from an initial state to the convergence domain only containing the target state,and a Lyapunov-based control is used to make the state enter the convergence domain and then continue to converge to the target state.At the same time,the continuous weak measurement of quantum system and the quantum state tomography method based on the on-line alternating direction multiplier(QST-OADM)are used to obtain the system information and estimate the quantum state which is used as the input of the quantum system controller.Then,the pure state feedback switching control method based on the on-line estimated state feedback is realized in an n-qubit stochastic open quantum system.The complete derivation process of n-qubit QST-OADM algorithm is given;Through strict theoretical proof and analysis,the convergence conditions to ensure any initial state of the quantum system to converge the target pure state are given.The proposed control method is applied to a 2-qubit stochastic open quantum system for numerical simulation experiments.Four possible different position cases between the initial estimated state and that of the controlled system are studied and discussed,and the performances of the state transition under the corresponding cases are analyzed.展开更多
Four-wheel independently driven electric vehicles(FWID-EV)endow a flexible and scalable control framework to improve vehicle performance.This paper integrates the torque vectoring and active suspension system(ASS)to e...Four-wheel independently driven electric vehicles(FWID-EV)endow a flexible and scalable control framework to improve vehicle performance.This paper integrates the torque vectoring and active suspension system(ASS)to enhance the vehicle’s longitudinal and vertical motion control performance.While the nonlinear characteristic of the tire model leads to a relatively heavier computational burden.To facilitate the controller design and ease the load,a half-vehicle dynamics system is built and simplified to the linear-time-varying(LTV)model.Then a model predictive controller is developed by formulating the objective function by comprehensively considering the safety,energy-saving and comfort requirements.The in-wheel motor efficiency and the power loss of tire slip are treated as optimization indices in this work to reduce energy consumption.Finally,the effectiveness of the proposed controller is verified through the rapid-control-prototype(RCP)test.The results demonstrate the enhancement of the energy-saving as well as comfort on the basis of vehicle stability.展开更多
Objective To explore the value of deep learning(DL)models semi-automatic training system for automatic optimization of clinical image quality control of transthoracic echocardiography(TTE).Methods Totally 1250 TTE vid...Objective To explore the value of deep learning(DL)models semi-automatic training system for automatic optimization of clinical image quality control of transthoracic echocardiography(TTE).Methods Totally 1250 TTE videos from 402 patients were retrospectively collected,including 490 apical four chamber(A4C),310 parasternal long axis view of left ventricle(PLAX)and 450 parasternal short axis view of great vessel(PSAX GV).The videos were divided into development set(245 A4C,155 PLAX,225 PSAX GV),semi-automated training set(98 A4C,62 PLAX,90 PSAX GV)and test set(147 A4C,93 PLAX,135 PSAX GV)at the ratio of 5∶2∶3.Based on development set and semi-automatic training set,DL model of quality control was semi-automatically iteratively optimized,and a semi-automatic training system was constructed,then the efficacy of DL models for recognizing TTE views and assessing imaging quality of TTE were verified in test set.Results After optimization,the overall accuracy,precision,recall,and F1 score of DL models for recognizing TTE views in test set improved from 97.33%,97.26%,97.26%and 97.26%to 99.73%,99.65%,99.77%and 99.71%,respectively,while the overall accuracy for assessing A4C,PLAX and PSAX GV TTE as standard views in test set improved from 89.12%,83.87%and 90.37%to 93.20%,90.32%and 93.33%,respectively.Conclusion The developed DL models semi-automatic training system could improve the efficiency of clinical imaging quality control of TTE and increase iteration speed.展开更多
Purpose:The study aimed to examine the reporting completeness of randomized controlled trials(RCTs)of non-pharmacological interventions following concussion.Methods:We searched MEDLINE,Embase,PsycInfo,CINAHL,and Web o...Purpose:The study aimed to examine the reporting completeness of randomized controlled trials(RCTs)of non-pharmacological interventions following concussion.Methods:We searched MEDLINE,Embase,PsycInfo,CINAHL,and Web of Science up to May 2022.Two reviewers independently screened studies and assessed reporting completeness using the Template for Intervention Description and Replication(TIDieR),Consensus on Exercise Reporting Template(CERT),and international Consensus on Therapeutic Exercise aNd Training(i-CONTENT)checklists.Additional information was sought my study authors where reporting was incomplete.Risk of bias(ROB)was assessed with the Cochrane ROB-2 Tool.RCTs examining non-pharmacological interventions following concussion.Results:We included 89 RCTs(n=53 high ROB)examining 11 different interventions for concussion:sub-symptom threshold aerobic exercise,cervicovestibular therapy,physical/cognitive rest,vision therapy,education,psychotherapy,hyperbaric oxygen therapy,transcranial magnetic stimulation,blue light therapy,osteopathic manipulation,and head/neck cooling.Median scores were:TIDieR 9/12(75%;interquartile range(IQR)=5;range:5-12),CERT 17/19(89%;IQR=2;range:10-19),and i-CONTENT 6/7(86%;IQR=1;range:5-7).Percentage of studies completely reporting all items was TIDieR 35%(31/89),CERT 24%(5/21),and i-CONTENT 10%(2/21).Studies were more completely reported after publication of TIDieR(t_(87)=2.08;p=0.04)and CERT(t_(19)=2.72;p=0.01).Reporting completeness was not strongly associated with journal impact factor(TIDieR:rs=0.27;p=0.01;CERT:r_(s)=-0.44;p=0.06;i-CONTENT:r_(s)=-0.17;p=0.48)or ROB(TIDieR:rs=0.11;p=0.31;CERT:rs=0.04;p=0.86;i-CONTENT:rs=0.12;p=0.60).Conclusion:RCTs of non-pharmacological interventions following concussion demonstrate moderate to good reporting completeness,but are often missing key components,particularly modifications,motivational strategies,and qualified supervisor.Reporting completeness improved after TIDieR and CERT publication,but publication in highly cited journals and low ROB do not guarantee reporting completeness.展开更多
Urban traffic control is a multifaceted and demanding task that necessitates extensive decision-making to ensure the safety and efficiency of urban transportation systems.Traditional approaches require traffic signal ...Urban traffic control is a multifaceted and demanding task that necessitates extensive decision-making to ensure the safety and efficiency of urban transportation systems.Traditional approaches require traffic signal professionals to manually intervene on traffic control devices at the intersection level,utilizing their knowledge and expertise.However,this process is cumbersome,labor-intensive,and cannot be applied on a large network scale.Recent studies have begun to explore the applicability of recommendation system for urban traffic control,which offer increased control efficiency and scalability.Such a decision recommendation system is complex,with various interdependent components,but a systematic literature review has not yet been conducted.In this work,we present an up-to-date survey that elucidates all the detailed components of a recommendation system for urban traffic control,demonstrates the utility and efficacy of such a system in the real world using data and knowledgedriven approaches,and discusses the current challenges and potential future directions of this field.展开更多
Data trading enables data owners and data requesters to sell and purchase data.With the emergence of blockchain technology,research on blockchain-based data trading systems is receiving a lot of attention.Particularly...Data trading enables data owners and data requesters to sell and purchase data.With the emergence of blockchain technology,research on blockchain-based data trading systems is receiving a lot of attention.Particularly,to reduce the on-chain storage cost,a novel paradigm of blockchain and cloud fusion has been widely considered as a promising data trading platform.Moreover,the fact that data can be used for commercial purposes will encourage users and organizations from various fields to participate in the data marketplace.In the data marketplace,it is a challenge how to trade the data securely outsourced to the external cloud in a way that restricts access to the data only to authorized users across multiple domains.In this paper,we propose a cross-domain bilateral access control protocol for blockchain-cloud based data trading systems.We consider a system model that consists of domain authorities,data senders,data receivers,a blockchain layer,and a cloud provider.The proposed protocol enables access control and source identification of the outsourced data by leveraging identity-based cryptographic techniques.In the proposed protocol,the outsourced data of the sender is encrypted under the target receiver’s identity,and the cloud provider performs policy-match verification on the authorization tags of the sender and receiver generated by the identity-based signature scheme.Therefore,data trading can be achieved only if the identities of the data sender and receiver simultaneously meet the policies specified by each other.To demonstrate efficiency,we evaluate the performance of the proposed protocol and compare it with existing studies.展开更多
基金financially supported by the Sichuan Science and Technology Program(Grant No.2023NSFSC1980)。
文摘An observer-based adaptive backstepping boundary control is proposed for vibration control of flexible offshore riser systems with unknown nonlinear input dead zone and uncertain environmental disturbances.The control algorithm can update the control law online through real-time data to make the controller adapt to the environment and improve the control precision.Specifically,based on the adaptive backstepping framework,virtual control laws and Lyapunov functions are designed for each subsystem.Three direction interference observers are designed to track the timevarying boundary disturbance.On this basis,the inverse of the dead zone and linear state transformation are used to compensate for the original system and eliminate the adverse effects of the dead zone.In addition,the stability of the closed-loop system is proven by Lyapunov stability theory.All the system states are bounded,and the vibration offset of the riser converges to a small area of the initial position.Finally,four examples of flexible marine risers are simulated in MATLAB to verify the effectiveness of the proposed controller.
基金supported in part by the Department of Navy award (N00014-22-1-2159)the National Science Foundation under award (ECCS-2227311)。
文摘This paper presents a risk-informed data-driven safe control design approach for a class of stochastic uncertain nonlinear discrete-time systems.The nonlinear system is modeled using linear parameter-varying(LPV)systems.A model-based probabilistic safe controller is first designed to guarantee probabilisticλ-contractivity(i.e.,stability and invariance)of the LPV system with respect to a given polyhedral safe set.To obviate the requirement of knowing the LPV system model and to bypass identifying its open-loop model,its closed-loop data-based representation is provided in terms of state and scheduling data as well as a decision variable.It is shown that the variance of the closedloop system,as well as the probability of safety satisfaction,depends on the decision variable and the noise covariance.A minimum-variance direct data-driven gain-scheduling safe control design approach is presented next by designing the decision variable such that all possible closed-loop system realizations satisfy safety with the highest confidence level.This minimum-variance approach is a control-oriented learning method since it minimizes the variance of the state of the closed-loop system with respect to the safe set,and thus minimizes the risk of safety violation.Unlike the certainty-equivalent approach that results in a risk-neutral control design,the minimum-variance method leads to a risk-averse control design.It is shown that the presented direct risk-averse learning approach requires weaker data richness conditions than existing indirect learning methods based on system identification and can lead to a lower risk of safety violation.Two simulation examples along with an experimental validation on an autonomous vehicle are provided to show the effectiveness of the presented approach.
基金the National Natural Science Foundation of China(62203356)Fundamental Research Funds for the Central Universities of China(31020210502002)。
文摘This paper studies the problem of time-varying formation control with finite-time prescribed performance for nonstrict feedback second-order multi-agent systems with unmeasured states and unknown nonlinearities.To eliminate nonlinearities,neural networks are applied to approximate the inherent dynamics of the system.In addition,due to the limitations of the actual working conditions,each follower agent can only obtain the locally measurable partial state information of the leader agent.To address this problem,a neural network state observer based on the leader state information is designed.Then,a finite-time prescribed performance adaptive output feedback control strategy is proposed by restricting the sliding mode surface to a prescribed region,which ensures that the closed-loop system has practical finite-time stability and that formation errors of the multi-agent systems converge to the prescribed performance bound in finite time.Finally,a numerical simulation is provided to demonstrate the practicality and effectiveness of the developed algorithm.
基金supported by the National Natural Science Foundation of China(U21A20166)in part by the Science and Technology Development Foundation of Jilin Province (20230508095RC)+1 种基金in part by the Development and Reform Commission Foundation of Jilin Province (2023C034-3)in part by the Exploration Foundation of State Key Laboratory of Automotive Simulation and Control。
文摘Aiming at the tracking problem of a class of discrete nonaffine nonlinear multi-input multi-output(MIMO) repetitive systems subjected to separable and nonseparable disturbances, a novel data-driven iterative learning control(ILC) scheme based on the zeroing neural networks(ZNNs) is proposed. First, the equivalent dynamic linearization data model is obtained by means of dynamic linearization technology, which exists theoretically in the iteration domain. Then, the iterative extended state observer(IESO) is developed to estimate the disturbance and the coupling between systems, and the decoupled dynamic linearization model is obtained for the purpose of controller synthesis. To solve the zero-seeking tracking problem with inherent tolerance of noise,an ILC based on noise-tolerant modified ZNN is proposed. The strict assumptions imposed on the initialization conditions of each iteration in the existing ILC methods can be absolutely removed with our method. In addition, theoretical analysis indicates that the modified ZNN can converge to the exact solution of the zero-seeking tracking problem. Finally, a generalized example and an application-oriented example are presented to verify the effectiveness and superiority of the proposed process.
基金the National Natural Science Foundation of China(No.52275062)and(No.52075262).
文摘Since backlash nonlinearity is inevitably existing in actuators for bidirectional stabilization system of allelectric tank,it behaves more drastically in high maneuvering environments.In this work,the accurate tracking control for bidirectional stabilization system of moving all-electric tank with actuator backlash and unmodeled disturbance is solved.By utilizing the smooth adaptive backlash inverse model,a nonlinear robust adaptive feedback control scheme is presented.The unknown parameters and unmodelled disturbance are addressed separately through the derived parametric adaptive function and the continuous nonlinear robust term.Because the unknown backlash parameters are updated via adaptive function and the backlash effect can be suppressed successfully by inverse operation,which ensures the system stability.Meanwhile,the system disturbance in the high maneuverable environment can be estimated with the constructed adaptive law online improving the engineering practicality.Finally,Lyapunov-based analysis proves that the developed controller can ensure the tracking error asymptotically converges to zero even with unmodeled disturbance and unknown actuator backlash.Contrast co-simulations and experiments illustrate the advantages of the proposed approach.
基金supported in part by the National Natural Science Foundation of China (61933007,62273087,U22A2044,61973102,62073180)the Shanghai Pujiang Program of China (22PJ1400400)+1 种基金the Royal Society of the UKthe Alexander von Humboldt Foundation of Germany。
文摘This paper concerns ultimately bounded output-feedback control problems for networked systems with unknown nonlinear dynamics. Sensor-to-observer signal transmission is facilitated over networks that has communication constraints.These transmissions are carried out over an unreliable communication channel. In order to enhance the utilization rate of measurement data, a buffer-aided strategy is novelly employed to store historical measurements when communication networks are inaccessible. Using the neural network technique, a novel observer-based controller is introduced to address effects of signal transmission behaviors and unknown nonlinear dynamics.Through the application of stochastic analysis and Lyapunov stability, a joint framework is constructed for analyzing resultant system performance under the introduced controller. Subsequently, existence conditions for the desired output-feedback controller are delineated. The required parameters for the observerbased controller are then determined by resolving some specific matrix inequalities. Finally, a simulation example is showcased to confirm method efficacy.
基金supported by the National Natural Science Foundation of China (62073015,62173036,62122014)。
文摘In this paper, a model predictive control(MPC)framework is proposed for finite-time stabilization of linear and nonlinear discrete-time systems subject to state and control constraints. The proposed MPC framework guarantees the finite-time convergence property by assigning the control horizon equal to the dimension of the overall system, and only penalizing the terminal cost in the optimization, where the stage costs are not penalized explicitly. A terminal inequality constraint is added to guarantee the feasibility and stability of the closed-loop system.Initial feasibility can be improved via augmentation. The finite-time convergence of the proposed MPC is proved theoretically,and is supported by simulation examples.
基金Supported by National Key R&D Program of China (Grant No.2021YFB2501800)National Natural Science Foundation of China (Grant No.52172384)+1 种基金Science and Technology Innovation Program of Hunan Province of China (Grant No.2021RC3048)State Key Laboratory of Advanced Design and Manufacturing Technology for Vehicle of China (Grant No.72275004)。
文摘Parking difficulties have become a social issue that people have to solve.Automated parking system is practicable for quick par operations without a driver which can also greatly reduces the probability of parking accidents.The paper proposes a Lyapunov-based nonlinear model predictive controller embedding an instructable solution which is generated by the modified rear-wheel feedback method(RF-LNMPC)in order to improve the overall path tracking accuracy in parking conditions.Firstly,A discrete-time RF-LNMPC considering the position and attitude of the parking vehicle is proposed to increase the success rate of automated parking effectively.Secondly,the RF-LNMPC problem with a multi-objective cost function is solved by the Interior-Point Optimization,of which the iterative initial values are described as the instructable solutions calculated by combining modified rear-wheel feedback to improve the performance of local optimal solution.Thirdly,the details on the computation of the terminal constraint and terminal cost for the linear time-varying case is presented.The closed-loop stability is verified via Lyapunov techniques by considering the terminal constraint and terminal cost theoretically.Finally,the proposed RF-LNMPC is implemented on a selfdriving Lincoln MKZ platform and the experiment results have shown improved performance in parallel and vertical parking conditions.The Monte Carlo analysis also demonstrates good stability and repeatability of the proposed method which can be applied in practical use in the near future.
基金supported in part by Shenzhen Key Laboratory of Control Theory and Intelligent Systems (ZDSYS20220330161800001)the National Natural Science Foundation of China (62173255, 62188101)。
文摘With the continuous breakthrough in information technology and its integration into practical applications, industrial digital twins are expected to accelerate their development in the near future. This paper studies various control strategies for digital twin systems from the viewpoint of practical applications.To make full use of advantages of digital twins for control systems, an architecture of digital twin control systems, adaptive model tracking scheme, performance prediction scheme, performance retention scheme, and fault tolerant control scheme are proposed. Those schemes are detailed to deal with different issues on model tracking, performance prediction, performance retention, and fault tolerant control of digital twin systems. Also, the stability of digital twin control systems is analysed. The proposed schemes for digital twin control systems are illustrated by examples.
基金supported by the National Natural Science Foundation of China(62103203)the General Terminal IC Interdisciplinary Science Center of Nankai University.
文摘Battery energy storage systems(BESSs)are widely used in smart grids.However,power consumed by inner impedance and the capacity degradation of each battery unit become particularly severe,which has resulted in an increase in operating costs.The general economic dispatch(ED)algorithm based on marginal cost(MC)consensus is usually a proportional(P)controller,which encounters the defects of slow convergence speed and low control accuracy.In order to solve the distributed ED problem of the isolated BESS network with excellent dynamic and steady-state performance,we attempt to design a proportional integral(PI)controller with a reset mechanism(PI+R)to asymptotically promote MC consensus and total power mismatch towards 0 in this paper.To be frank,the integral term in the PI controller is reset to 0 at an appropriate time when the proportional term undergoes a zero crossing,which accelerates convergence,improves control accuracy,and avoids overshoot.The eigenvalues of the system under a PI+R controller is well analyzed,ensuring the regularity of the system and enabling the reset mechanism.To ensure supply and demand balance within the isolated BESSs,a centralized reset mechanism is introduced,so that the controller is distributed in a flow set and centralized in a jump set.To cope with Zeno behavior and input delay,a dwell time that the system resides in a flow set is given.Based on this,the system with input delays can be reduced to a time-delay free system.Considering the capacity limitation of the battery,a modified MC scheme with PI+R controller is designed.The correctness of the designed scheme is verified through relevant simulations.
基金supported in part by the National Key Research and Development Program of China(2023YFA1011803)the National Natural Science Foundation of China(62273064,61933012,62250710167,61860206008,62203078)the Central University Project(2021CDJCGJ002,2022CDJKYJH019,2022CDJKYJH051)。
文摘This work proposes an event-triggered adaptive control approach for a class of uncertain nonlinear systems under irregular constraints.Unlike the constraints considered in most existing papers,here the external irregular constraints are considered and a constraints switching mechanism(CSM)is introduced to circumvent the difficulties arising from irregular output constraints.Based on the CSM,a new class of generalized barrier functions are constructed,which allows the control results to be independent of the maximum and minimum values(MMVs)of constraints and thus extends the existing results.Finally,we proposed a novel dynamic constraint-driven event-triggered strategy(DCDETS),under which the stress on signal transmission is reduced greatly and no constraints are violated by making a dynamic trade-off among system state,external constraints,and inter-execution intervals.It is proved that the system output is driven to close to the reference trajectory and the semi-global stability is guaranteed under the proposed control scheme,regardless of the external irregular output constraints.Simulation also verifies the effectiveness and benefits of the proposed method.
基金the support of the National Natural Science Foundation of China(52077061)Fundamental Research Funds for the Central Universities(B240201121).
文摘Offshore wind farms are becoming increasingly distant from onshore centralized control centers,and the communication delays between them inevitably introduce time delays in the measurement signal of the primary frequency control.This causes a deterioration in the performance of the primary frequency control and,in some cases,may even result in frequency instability within the power system.Therefore,a frequency response model that incorporates communication delays was established for power systems that integrate offshore wind power.The Padéapproximation was used to model the time delays,and a linearized frequency response model of the power system was derived to investigate the frequency stability under different time delays.The influences of the wind power proportion and frequency control parameters on the system frequency stability were explored.In addition,a Smith delay compensation control strategy was devised to mitigate the effects of communication delays on the system frequency dynamics.Finally,a power system incorporating offshore wind power was constructed using the MATLAB/Simulink platform.The simulation results demonstrate the effectiveness and robustness of the proposed delay compensation control strategy.
基金funded by the National Natural Science Foundation of China(Grant Number 52075361)Shanxi Province Science and Technology Major Project(Grant Number 20201102003)+3 种基金Lvliang Science and Technology Guidance Special Key R&D Project(Grant Number 2022XDHZ08)National Natural Science Foundation of China(Grant Number 51905367)Shanxi Natural Science Foundation General Project(Grant Numbers 202103021224271,202203021211201)Shanxi Province Key Research and Development Plan(Grant Number 202102020101013).
文摘In the fiber winding process,strong disturbance,uncertainty,strong coupling,and fiber friction complicate the winding constant tension control.In order to effectively reduce the influence of these problems on the tension output,this paper proposed a tension fluctuation rejection strategy based on feedforward compensation.In addition to the bias harmonic curve of the unknown state,the tension fluctuation also contains the influence of bounded noise.A tension fluctuation observer(TFO)is designed to cancel the uncertain periodic signal,in which the frequency generator is used to estimate the critical parameter information.Then,the fluctuation signal is reconstructed by a third-order auxiliary filter.The estimated signal feedforward compensates for the actual tension fluctuation.Furthermore,a time-varying parameters fractional-order PID controller(TPFOPID)is realized to attenuate the bounded noise in the fluctuation.Finally,TPFOPID is enhanced by TFO and applied to control a tension control system considering multi-source disturbances.The stability of the method is analyzed by using the Lyapunov theorem.Finally,numerical simulations verify that the proposed scheme improves the tracking ability and robustness of the system in response to tension fluctuations.
基金supported by the National Natural Science Foundation of China(62473354).
文摘For the n-qubit stochastic open quantum systems,based on the Lyapunov stability theorem and LaSalle’s invariant set principle,a pure state switching control based on on-line estimated state feedback(short for OQST-SFC)is proposed to realize the state transition the pure state of the target state including eigenstate and superposition state.The proposed switching control consists of a constant control and a control law designed based on the Lyapunov method,in which the Lyapunov function is the state distance of the system.The constant control is used to drive the system state from an initial state to the convergence domain only containing the target state,and a Lyapunov-based control is used to make the state enter the convergence domain and then continue to converge to the target state.At the same time,the continuous weak measurement of quantum system and the quantum state tomography method based on the on-line alternating direction multiplier(QST-OADM)are used to obtain the system information and estimate the quantum state which is used as the input of the quantum system controller.Then,the pure state feedback switching control method based on the on-line estimated state feedback is realized in an n-qubit stochastic open quantum system.The complete derivation process of n-qubit QST-OADM algorithm is given;Through strict theoretical proof and analysis,the convergence conditions to ensure any initial state of the quantum system to converge the target pure state are given.The proposed control method is applied to a 2-qubit stochastic open quantum system for numerical simulation experiments.Four possible different position cases between the initial estimated state and that of the controlled system are studied and discussed,and the performances of the state transition under the corresponding cases are analyzed.
基金Supported by National Natural Science Foundation of China(Grant Nos.51975118,52025121)Foundation of State Key Laboratory of Automotive Simulation and Control of China(Grant No.20210104)+1 种基金Foundation of State Key Laboratory of Automobile Safety and Energy Saving of China(Grant No.KFZ2201)Special Fund of Jiangsu Province for the Transformation of Scientific and Technological Achievements of China(Grant No.BA2021023).
文摘Four-wheel independently driven electric vehicles(FWID-EV)endow a flexible and scalable control framework to improve vehicle performance.This paper integrates the torque vectoring and active suspension system(ASS)to enhance the vehicle’s longitudinal and vertical motion control performance.While the nonlinear characteristic of the tire model leads to a relatively heavier computational burden.To facilitate the controller design and ease the load,a half-vehicle dynamics system is built and simplified to the linear-time-varying(LTV)model.Then a model predictive controller is developed by formulating the objective function by comprehensively considering the safety,energy-saving and comfort requirements.The in-wheel motor efficiency and the power loss of tire slip are treated as optimization indices in this work to reduce energy consumption.Finally,the effectiveness of the proposed controller is verified through the rapid-control-prototype(RCP)test.The results demonstrate the enhancement of the energy-saving as well as comfort on the basis of vehicle stability.
文摘Objective To explore the value of deep learning(DL)models semi-automatic training system for automatic optimization of clinical image quality control of transthoracic echocardiography(TTE).Methods Totally 1250 TTE videos from 402 patients were retrospectively collected,including 490 apical four chamber(A4C),310 parasternal long axis view of left ventricle(PLAX)and 450 parasternal short axis view of great vessel(PSAX GV).The videos were divided into development set(245 A4C,155 PLAX,225 PSAX GV),semi-automated training set(98 A4C,62 PLAX,90 PSAX GV)and test set(147 A4C,93 PLAX,135 PSAX GV)at the ratio of 5∶2∶3.Based on development set and semi-automatic training set,DL model of quality control was semi-automatically iteratively optimized,and a semi-automatic training system was constructed,then the efficacy of DL models for recognizing TTE views and assessing imaging quality of TTE were verified in test set.Results After optimization,the overall accuracy,precision,recall,and F1 score of DL models for recognizing TTE views in test set improved from 97.33%,97.26%,97.26%and 97.26%to 99.73%,99.65%,99.77%and 99.71%,respectively,while the overall accuracy for assessing A4C,PLAX and PSAX GV TTE as standard views in test set improved from 89.12%,83.87%and 90.37%to 93.20%,90.32%and 93.33%,respectively.Conclusion The developed DL models semi-automatic training system could improve the efficiency of clinical imaging quality control of TTE and increase iteration speed.
文摘Purpose:The study aimed to examine the reporting completeness of randomized controlled trials(RCTs)of non-pharmacological interventions following concussion.Methods:We searched MEDLINE,Embase,PsycInfo,CINAHL,and Web of Science up to May 2022.Two reviewers independently screened studies and assessed reporting completeness using the Template for Intervention Description and Replication(TIDieR),Consensus on Exercise Reporting Template(CERT),and international Consensus on Therapeutic Exercise aNd Training(i-CONTENT)checklists.Additional information was sought my study authors where reporting was incomplete.Risk of bias(ROB)was assessed with the Cochrane ROB-2 Tool.RCTs examining non-pharmacological interventions following concussion.Results:We included 89 RCTs(n=53 high ROB)examining 11 different interventions for concussion:sub-symptom threshold aerobic exercise,cervicovestibular therapy,physical/cognitive rest,vision therapy,education,psychotherapy,hyperbaric oxygen therapy,transcranial magnetic stimulation,blue light therapy,osteopathic manipulation,and head/neck cooling.Median scores were:TIDieR 9/12(75%;interquartile range(IQR)=5;range:5-12),CERT 17/19(89%;IQR=2;range:10-19),and i-CONTENT 6/7(86%;IQR=1;range:5-7).Percentage of studies completely reporting all items was TIDieR 35%(31/89),CERT 24%(5/21),and i-CONTENT 10%(2/21).Studies were more completely reported after publication of TIDieR(t_(87)=2.08;p=0.04)and CERT(t_(19)=2.72;p=0.01).Reporting completeness was not strongly associated with journal impact factor(TIDieR:rs=0.27;p=0.01;CERT:r_(s)=-0.44;p=0.06;i-CONTENT:r_(s)=-0.17;p=0.48)or ROB(TIDieR:rs=0.11;p=0.31;CERT:rs=0.04;p=0.86;i-CONTENT:rs=0.12;p=0.60).Conclusion:RCTs of non-pharmacological interventions following concussion demonstrate moderate to good reporting completeness,but are often missing key components,particularly modifications,motivational strategies,and qualified supervisor.Reporting completeness improved after TIDieR and CERT publication,but publication in highly cited journals and low ROB do not guarantee reporting completeness.
基金supported by the National Key Research and Development Program of China(2021YFB2900200)the Key Research and Development Program of Science and Technology Department of Zhejiang Province(2022C01121)Zhejiang Provincial Department of Transport Research Project(ZJXL-JTT-202223).
文摘Urban traffic control is a multifaceted and demanding task that necessitates extensive decision-making to ensure the safety and efficiency of urban transportation systems.Traditional approaches require traffic signal professionals to manually intervene on traffic control devices at the intersection level,utilizing their knowledge and expertise.However,this process is cumbersome,labor-intensive,and cannot be applied on a large network scale.Recent studies have begun to explore the applicability of recommendation system for urban traffic control,which offer increased control efficiency and scalability.Such a decision recommendation system is complex,with various interdependent components,but a systematic literature review has not yet been conducted.In this work,we present an up-to-date survey that elucidates all the detailed components of a recommendation system for urban traffic control,demonstrates the utility and efficacy of such a system in the real world using data and knowledgedriven approaches,and discusses the current challenges and potential future directions of this field.
基金supported by Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(No.2022R1I1A3063257)supported by the MSIT(Ministry of Science and ICT),Korea,under the Special R&D Zone Development Project(R&D)—Development of R&D Innovation Valley Support Program(2023-DD-RD-0152)supervised by the Innovation Foundation.
文摘Data trading enables data owners and data requesters to sell and purchase data.With the emergence of blockchain technology,research on blockchain-based data trading systems is receiving a lot of attention.Particularly,to reduce the on-chain storage cost,a novel paradigm of blockchain and cloud fusion has been widely considered as a promising data trading platform.Moreover,the fact that data can be used for commercial purposes will encourage users and organizations from various fields to participate in the data marketplace.In the data marketplace,it is a challenge how to trade the data securely outsourced to the external cloud in a way that restricts access to the data only to authorized users across multiple domains.In this paper,we propose a cross-domain bilateral access control protocol for blockchain-cloud based data trading systems.We consider a system model that consists of domain authorities,data senders,data receivers,a blockchain layer,and a cloud provider.The proposed protocol enables access control and source identification of the outsourced data by leveraging identity-based cryptographic techniques.In the proposed protocol,the outsourced data of the sender is encrypted under the target receiver’s identity,and the cloud provider performs policy-match verification on the authorization tags of the sender and receiver generated by the identity-based signature scheme.Therefore,data trading can be achieved only if the identities of the data sender and receiver simultaneously meet the policies specified by each other.To demonstrate efficiency,we evaluate the performance of the proposed protocol and compare it with existing studies.