The main disadvantage of conventional ureteral stents commonly used to provide urinary drainage after urological practice is that the patients have to undergo a secondary surgical procedure to remove stents. A new bra...The main disadvantage of conventional ureteral stents commonly used to provide urinary drainage after urological practice is that the patients have to undergo a secondary surgical procedure to remove stents. A new braided thin-walled biodegradable ureteral stent composed of PGA ( polyglycolic acid) and PLGA ( eopolymer of polylactic and polygiycolic acid) mnltifilaments was evaluated in v/tro in this study. In vitro degradation was performed in artificial urine with pH of 5.8 and the temperature of 37~C. The mass loss, mechanical properties, and morphology were observed at different degradaing time intervals of 0, 1, 2, 3, 4, and 5 weeks. The stent had a thinner wail than those of other degradable stents and provided better mechanical properties. The braided thin-walled biodegradable ureteral stents began to degrade after 2 weeks. At the week of 5, the stents were fully degraded. The degradative process of stents is smooth and well controlled.展开更多
基金Program for Outstanding Medical Academic of Shanghai,China (No. LJ10016)Joint Key Project for the New Technology of Shanghai Municipal Hospital,China (No. SHDC12010108)+1 种基金111 Project"Biomedical Textile Materials Science and Technology",China (No.B07024)Doctoral Fund of Ministry of Education of China (No. 20100075110001)
文摘The main disadvantage of conventional ureteral stents commonly used to provide urinary drainage after urological practice is that the patients have to undergo a secondary surgical procedure to remove stents. A new braided thin-walled biodegradable ureteral stent composed of PGA ( polyglycolic acid) and PLGA ( eopolymer of polylactic and polygiycolic acid) mnltifilaments was evaluated in v/tro in this study. In vitro degradation was performed in artificial urine with pH of 5.8 and the temperature of 37~C. The mass loss, mechanical properties, and morphology were observed at different degradaing time intervals of 0, 1, 2, 3, 4, and 5 weeks. The stent had a thinner wail than those of other degradable stents and provided better mechanical properties. The braided thin-walled biodegradable ureteral stents began to degrade after 2 weeks. At the week of 5, the stents were fully degraded. The degradative process of stents is smooth and well controlled.