期刊文献+
共找到6,097篇文章
< 1 2 250 >
每页显示 20 50 100
PARTIAL LEAST-SQUARES(PLS)REGRESSION AND SPECTROPHOTOMETRY AS APPLIED TO THE ANALYSIS OF MULTICOMPONENT MIXTURES
1
作者 Xin An LIU Le Ming SHI +4 位作者 Zhi Hong XU Zhong Xiao PAN Zhi Liang LI Ying GAO Laboratory No.502,Institute of Chemical Defense,Beijing 102205 Laboratory of Computer Chemistry,Institute of Chemical Metallurgy,Chinese Academy of Sciences,Beijing 100080 《Chinese Chemical Letters》 SCIE CAS CSCD 1991年第3期233-236,共4页
The UV absorption spectra of o-naphthol,α-naphthylamine,2,7-dihydroxy naphthalene,2,4-dimethoxy ben- zaldehyde and methyl salicylate,overlap severely;therefore it is impossible to determine them in mixtures by tradit... The UV absorption spectra of o-naphthol,α-naphthylamine,2,7-dihydroxy naphthalene,2,4-dimethoxy ben- zaldehyde and methyl salicylate,overlap severely;therefore it is impossible to determine them in mixtures by traditional spectrophotometric methods.In this paper,the partial least-squares(PLS)regression is applied to the simultaneous determination of these compounds in mixtures by UV spectrophtometry without any pretreatment of the samples.Ten synthetic mixture samples are analyzed by the proposed method.The mean recoveries are 99.4%,996%,100.2%,99.3% and 99.1%,and the relative standard deviations(RSD) are 1.87%,1.98%,1.94%,0.960% and 0.672%,respectively. 展开更多
关键词 pls)REGRESSION AND SPECTROPHOTOMETRY AS APplIED TO THE ANALYSIS OF MULTICOMPONENT MIXTURES partial LEAST-squareS AS
下载PDF
Partial Least Squares(PLS)Methods for Abnormal Detection of Breast Cells
2
作者 Yuchen Zhu Shanxiong Chen +1 位作者 Chunrong Chen Lin Chen 《国际计算机前沿大会会议论文集》 2017年第1期22-24,共3页
Breast cancer is one of the malignant tumors having high incidence in women,the incidence of breast cancer has increased in all parts of the world since twentieth century,but its etiology is not yet completely clear,s... Breast cancer is one of the malignant tumors having high incidence in women,the incidence of breast cancer has increased in all parts of the world since twentieth century,but its etiology is not yet completely clear,so it is very important to detect breast cells.In this paper,we built a regression model to detect breast cells,and generated a method for predicting the formation of benign and malignant breast cells by training the model,then we used the 10 features of breast cells to predict it,the results reaching upto 93.67%accuracy,it was very effective to predict and analyse whether the breast cells getting cancer,It had an important role in the diagnosis and prevention of breast cancer. 展开更多
关键词 partial least squareS MULTIVARIATE analysis BREAST CANCER Prediction
下载PDF
A multivariate partial least squares approach to joint association analysis for multiple correlated traits 被引量:3
3
作者 Yang Xu Wenming Hu +1 位作者 Zefeng Yang Chenwu Xu 《The Crop Journal》 SCIE CAS CSCD 2016年第1期21-29,共9页
Many complex traits are highly correlated rather than independent. By taking the correlation structure of multiple traits into account, joint association analyses can achieve both higher statistical power and more acc... Many complex traits are highly correlated rather than independent. By taking the correlation structure of multiple traits into account, joint association analyses can achieve both higher statistical power and more accurate estimation. To develop a statistical approach to joint association analysis that includes allele detection and genetic effect estimation, we combined multivariate partial least squares regression with variable selection strategies and selected the optimal model using the Bayesian Information Criterion(BIC). We then performed extensive simulations under varying heritabilities and sample sizes to compare the performance achieved using our method with those obtained by single-trait multilocus methods. Joint association analysis has measurable advantages over single-trait methods, as it exhibits superior gene detection power, especially for pleiotropic genes. Sample size, heritability,polymorphic information content(PIC), and magnitude of gene effects influence the statistical power, accuracy and precision of effect estimation by the joint association analysis. 展开更多
关键词 Association analysis MULTIplE CORRELATED TRAITS Supersaturated model MULTILOCUS MULTIVARIATE partial least squareS
下载PDF
Near-Infrared Spectroscopy Combined with Partial Least Squares Discriminant Analysis Applied to Identification of Liquor Brands 被引量:4
4
作者 Bin Yang Lijun Yao Tao Pan 《Engineering(科研)》 2017年第2期181-189,共9页
The identification of liquor brands is very important for food safety. Most of the fake liquors are usually made into the products with the same flavor and alcohol content as regular brand, so the identification for t... The identification of liquor brands is very important for food safety. Most of the fake liquors are usually made into the products with the same flavor and alcohol content as regular brand, so the identification for the liquor brands with the same flavor and the same alcohol content is essential. However, it is also difficult because the components of such liquor samples are very similar. Near-infrared (NIR) spectroscopy combined with partial least squares discriminant analysis (PLS-DA) was applied to identification of liquor brands with the same flavor and alcohol content. A total of 160 samples of Luzhou Laojiao liquor and 200 samples of non-Luzhou Laojiao liquor with the same flavor and alcohol content were used for identification. Samples of each type were randomly divided into the modeling and validation sets. The modeling samples were further divided into calibration and prediction sets using the Kennard-Stone algorithm to achieve uniformity and representativeness. In the modeling and validation processes based on PLS-DA method, the recognition rates of samples achieved 99.1% and 98.7%, respectively. The results show high prediction performance for the identification of liquor brands, and were obviously better than those obtained from the principal component linear discriminant analysis method. NIR spectroscopy combined with the PLS-DA method provides a quick and effective means of the discriminant analysis of liquor brands, and is also a promising tool for large-scale inspection of liquor food safety. 展开更多
关键词 IDENTIFICATION of LIQUOR Brands NEAR-INFRARED Spectroscopy partial Least squareS DISCRIMINANT ANALYSIS Principal Component Linear DISCRIMINANT ANALYSIS
下载PDF
Application of neural network model coupling with the partial least-squares method for forecasting watre yield of mine 被引量:2
5
作者 陈南祥 曹连海 黄强 《Journal of Coal Science & Engineering(China)》 2005年第1期40-43,共4页
Scientific forecasting water yield of mine is of great significance to the safety production of mine and the colligated using of water resources. The paper established the forecasting model for water yield of mine, co... Scientific forecasting water yield of mine is of great significance to the safety production of mine and the colligated using of water resources. The paper established the forecasting model for water yield of mine, combining neural network with the partial least square method. Dealt with independent variables by the partial least square method, it can not only solve the relationship between independent variables but also reduce the input dimensions in neural network model, and then use the neural network which can solve the non-linear problem better. The result of an example shows that the prediction has higher precision in forecasting and fitting. 展开更多
关键词 water yield of mine partial least square method neural network forecasting model
下载PDF
Near-Infrared Spectroscopy Combined with Absorbance Upper Optimization Partial Least Squares Applied to Rapid Analysis of Polysaccharide for Proprietary Chinese Medicine Oral Solution 被引量:2
6
作者 Jiexiong Su Xinkai Gao +5 位作者 Lirong Tan Xianzhao Liu Yueqing Ye Yifang Chen Kaisheng Ma Tao Pan 《American Journal of Analytical Chemistry》 2016年第3期275-281,共7页
Near-infrared (NIR) spectroscopy was applied to reagent-free quantitative analysis of polysaccharide of a brand product of proprietary Chinese medicine (PCM) oral solution samples. A novel method, called absorbance up... Near-infrared (NIR) spectroscopy was applied to reagent-free quantitative analysis of polysaccharide of a brand product of proprietary Chinese medicine (PCM) oral solution samples. A novel method, called absorbance upper optimization partial least squares (AUO-PLS), was proposed and successfully applied to the wavelength selection. Based on varied partitioning of the calibration and prediction sample sets, the parameter optimization was performed to achieve stability. On the basis of the AUO-PLS method, the selected upper bound of appropriate absorbance was 1.53 and the corresponding wavebands combination was 400 - 1880 & 2088 - 2346 nm. With the use of random validation samples excluded from the modeling process, the root-mean-square error and correlation coefficient of prediction for polysaccharide were 27.09 mg·L<sup>-</sup><sup>1</sup> and 0.888, respectively. The results indicate that the NIR prediction values are close to those of the measured values. NIR spectroscopy combined with AUO-PLS method provided a promising tool for quantification of the polysaccharide for PCM oral solution and this technique is rapid and simple when compared with conventional methods. 展开更多
关键词 Near-Infrared Spectroscopic Analysis Proprietary Chinese Medicine Oral Solution POLYSACCHARIDE Absorbance Upper Optimization partial Least squares
下载PDF
Development a Spectrophotometric of Fe(Ⅲ), Al(Ⅲ) and Cu(Ⅱ) Using Eriochrome Cyanine R Ligand and Assessment of the Obtained Data by Partial Least-Squares and Artificial Neural Network Method-Application to Natural Waters
7
作者 A. Hakan AKTAS 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2018年第8期2638-2644,共7页
Simultaneous determination of heavy metal cations and accurate quantitative prediction of them are of great interest in analytical chemistry.This work has focused on a comprehensive comparison of partial least squares... Simultaneous determination of heavy metal cations and accurate quantitative prediction of them are of great interest in analytical chemistry.This work has focused on a comprehensive comparison of partial least squares(PLS-1)and artificial neural networks(ANN)as two types of chemometric methods.For this purpose,aluminum,iron and copper were studied as three analytes whose UV-Vis absorption spectra highly overlap each other.Accordance with determined parameters(ligand concentration,pH,waiting times,the relationship between absorbance and concentration of metal ion effect and foreign ions)are provided and the optimum conditions.After establishing the optimum conditions for Fe^(3+),Al^(3+) and Cu^(2+) containing mixtures spectrophotometric determinations and the data calibration method of least squares(PLS-1)regression,and artificial neural network(ANN)methods were used.Chemometric methods are applied in a fast,simple,and the results are applicable. 展开更多
关键词 UV-Vis spectrophotometry partial least squares Artificial neural network ALUMINUM IRON COPPER
下载PDF
Application of partial least squares regression in data analysis of mining subsidence
8
作者 FENG Zun-de~(1,2), LU Xiu-shan~1, SHI Yu-feng~1, HUA Peng~1 (1. Shandong University of Science and Technology, Tai’an 271019, China 2. Xuzhou Normal University, Xuzhou 221116, China) 《中国有色金属学会会刊:英文版》 CSCD 2005年第S1期156-158,共3页
Based on the surveying data of strata-moving angle and the ordinary least squares regression, this paper is to construct, a regression model is constructed which is strata-moving parameter β concerning the coal bed o... Based on the surveying data of strata-moving angle and the ordinary least squares regression, this paper is to construct, a regression model is constructed which is strata-moving parameter β concerning the coal bed obliquity, coal thickness, mining depth, etc. But the regression is unsuccessful. The result is that none of the parameters is suited, this is not up to objective reality. This paper presents a novel method, partial least squares regression (PLS regression), to construct the statistic model of strata-moving parameter β. The experiment shows that the forecasting model is reasonable. 展开更多
关键词 strata-moving PARAMETER least squareS regression multi-collinear pls regression
下载PDF
DATA MODELING METHOD BASED ON PARTIAL LEAST SQUARE REGRESSION AND APPLICATIO N IN CORRELATION ANALYSIS OF THE STATOR BARS CONDITION PARAMETERS
9
作者 李锐华 高乃奎 +1 位作者 谢恒堃 史维祥 《Journal of Pharmaceutical Analysis》 SCIE CAS 2004年第2期127-131,共5页
Objective To investigate v arious data message of the stator bars condition parameters under the condition that only a few samples are available, especially about correlation information between the nondestructiv... Objective To investigate v arious data message of the stator bars condition parameters under the condition that only a few samples are available, especially about correlation information between the nondestructive parameters and residual breakdown voltage of the stat or bars. Methods Artificial stator bars is designed to simulat e the generator bars. The partial didcharge( PD) and dielectric loss experiments are performed in order to obtain the nondestructive parameters, and the residua l breakdown voltage acquired by AC damage experiment. In order to eliminate the dimension effect on measurement data, raw data is preprocessed by centered-compr ess. Based on the idea of extracting principal components, a partial least squar e (PLS) method is applied to screen and synthesize correlation information betwe en the nondestructive parameters and residual breakdown voltage easily. Moreover , various data message about condition parameters are also discussed. Re sults Graphical analysis function of PLS is easily to understand vario us data message of the stator bars condition parameters. The analysis Results ar e consistent with result of aging testing. Conclusion The meth od can select and extract PLS components of condition parameters from sample dat a, and the problems of less samples and multicollinearity are solved effectively in regression analysis. 展开更多
关键词 partial least square PCA condition parameter s tator winding
下载PDF
Quantum partial least squares regression algorithm for multiple correlation problem
10
作者 Yan-Yan Hou Jian Li +1 位作者 Xiu-Bo Chen Yuan Tian 《Chinese Physics B》 SCIE EI CAS CSCD 2022年第3期177-186,共10页
Partial least squares(PLS) regression is an important linear regression method that efficiently addresses the multiple correlation problem by combining principal component analysis and multiple regression. In this pap... Partial least squares(PLS) regression is an important linear regression method that efficiently addresses the multiple correlation problem by combining principal component analysis and multiple regression. In this paper, we present a quantum partial least squares(QPLS) regression algorithm. To solve the high time complexity of the PLS regression, we design a quantum eigenvector search method to speed up principal components and regression parameters construction. Meanwhile, we give a density matrix product method to avoid multiple access to quantum random access memory(QRAM)during building residual matrices. The time and space complexities of the QPLS regression are logarithmic in the independent variable dimension n, the dependent variable dimension w, and the number of variables m. This algorithm achieves exponential speed-ups over the PLS regression on n, m, and w. In addition, the QPLS regression inspires us to explore more potential quantum machine learning applications in future works. 展开更多
关键词 quantum machine learning partial least squares regression eigenvalue decomposition
下载PDF
Near-Infrared Spectroscopy Coupled with Kernel Partial Least Squares-Discriminant Analysis for Rapid Screening Water Containing Malathion
11
作者 Congying Gu Bingren Xiang +1 位作者 Yilong Su Jianping Xu 《American Journal of Analytical Chemistry》 2013年第3期111-116,共6页
Near-infrared spectroscopy coupled with kernel partial least squares-discriminant analysis was used to rapidly screen water containing malathion. In the wavenumber of 4348 cm-1 to 9091 cm-1, the overall correct classi... Near-infrared spectroscopy coupled with kernel partial least squares-discriminant analysis was used to rapidly screen water containing malathion. In the wavenumber of 4348 cm-1 to 9091 cm-1, the overall correct classification rate of kernel partial least squares-discriminant analysis was 100% for training set, and 100% for test set, with the lowest concentration detected malathion residues in water being 1 μg·ml-1. Kernel partial least squares-discriminant analysis was able to have a good performance in classifying data in nonlinear systems. It was inferred that Near-infrared spectroscopy coupled with the kernel partial least squares-discriminant analysis had a potential in rapid screening other pesticide residues in water. 展开更多
关键词 KERNEL partial Least squares-Discriminant Analysis NEAR-INFRARED Spectroscopy MALATHION WATER
下载PDF
偏最小二乘(PartialLeast Square)方法的拟合指标及其在满意度研究中的应用 被引量:21
12
作者 金勇进 梁燕 《数理统计与管理》 CSSCI 北大核心 2005年第2期40-44,共5页
本文在对顾客满意度模型及PLS方法进行简单介绍的基础上,对PLS的拟合指标,包括共同因子、多元相关平方和冗余,进行了讨论。
关键词 顾客满意度 偏最小二乘 共同因子 多元相关平方 冗余
下载PDF
基于OPLS-DA模型分析不同养殖方式下宁都黄鸡肌肉关键挥发性风味物质
13
作者 葛庆联 刘茵茵 +5 位作者 樊艳凤 马丽娜 贾晓旭 高玉时 周瑶敏 唐修君 《扬州大学学报(农业与生命科学版)》 CAS 北大核心 2024年第4期49-56,共8页
为研究不同养殖方式下宁都黄鸡肌肉关键挥发性风味物质,将试验鸡随机分为笼养组和平养组,饲喂同一日粮。试验鸡达上市日龄时对鸡肉进行感官品尝评价和挥发性风味物质检测,并采用正交偏最小二乘-判别分析(orthogonal partial least squar... 为研究不同养殖方式下宁都黄鸡肌肉关键挥发性风味物质,将试验鸡随机分为笼养组和平养组,饲喂同一日粮。试验鸡达上市日龄时对鸡肉进行感官品尝评价和挥发性风味物质检测,并采用正交偏最小二乘-判别分析(orthogonal partial least squares-discriminant analysis,OPLS-DA)方法筛选与不同养殖方式相关的差异性风味物质。结果表明:平养组和笼养组共有的挥发性风味物质27种,主要为酚类、醇类和烃类。挥发性风味物质中,己醛、1-辛烯-3-醇、E-2-壬烯醛、正己醇、壬醛、2,3-戊二酮、癸醛、2,3-辛二酮、E-2-辛烯醛为具有显著性差异的挥发性风味物质。综上,这一研究可为地方鸡肉品质基于风味物质的评价提供科学依据。 展开更多
关键词 宁都黄鸡 养殖方式 挥发性物质 正交偏最小二乘-判别分析
下载PDF
基于PLSR和LSSVM模型的土壤水分高光谱反演
14
作者 刘英 范凯旋 +2 位作者 裴为豪 沈文静 葛建华 《矿业安全与环保》 CAS 北大核心 2024年第5期147-153,共7页
为对地下采矿扰动区表层土壤水分进行反演,以大柳塔煤矿52501工作面为例,利用无人机搭载成像光谱仪获取高光谱影像,对获取的光谱数据进行对数、倒数对数、一阶和包络线去除变换,结合地面采集的128个土壤水分数据,基于偏最小二乘回归(PL... 为对地下采矿扰动区表层土壤水分进行反演,以大柳塔煤矿52501工作面为例,利用无人机搭载成像光谱仪获取高光谱影像,对获取的光谱数据进行对数、倒数对数、一阶和包络线去除变换,结合地面采集的128个土壤水分数据,基于偏最小二乘回归(PLSR)和最小二乘支持向量机(LSSVM)构建土壤水分预测模型并验证其预测精度。结果表明,基于一阶变换的PLSR模型和LSSVM模型预测精度相对较好,一阶变换的PLSR模型建模集R^(2)_(c)和预测集R^(2)_(p)分别为0.7021和0.6405,均方根误差RMSE_(c)和RMSE_(p)分别为1.6384%和1.1034%,相对分析误差RPD_(p)为1.7263;一阶变换的LSSVM模型建模集R^(2)_(c)和预测集R^(2)_(p)分别为0.8125和0.5979,均方根误差RMSE_(c)和RMSE_(p)分别为1.2755%和1.3459%,相对分析误差RPD_(P)为1.6323。最终基于PLSR和LSSVM模型完成了土壤水分的制图,实现了土壤水分的空间预测,为该研究区植被引导修复中土壤水分精准提升提供了空间数据支持。 展开更多
关键词 土壤含水量 高光谱 偏最小二乘回归 最小二乘支持向量机 无人机 干旱阈值 引导修复
下载PDF
优化光谱指数结合PLSR的多金属矿区土壤As含量高光谱反演 被引量:1
15
作者 周瑶 成永生 +4 位作者 王丹平 张泽文 曾德兴 李向阳 毛春旺 《中国有色金属学报》 EI CAS CSCD 北大核心 2024年第2期653-667,共15页
砷(As)是我国多金属矿区的主要污染物之一,对环境、农业和人类健康构成严重威胁。近地高光谱技术具有快速、动态、无损、光谱分辨率高等优势,对于多金属矿区土壤As污染监测与综合治理具有巨大应用潜力。然而,由于受污染区域、土壤背景... 砷(As)是我国多金属矿区的主要污染物之一,对环境、农业和人类健康构成严重威胁。近地高光谱技术具有快速、动态、无损、光谱分辨率高等优势,对于多金属矿区土壤As污染监测与综合治理具有巨大应用潜力。然而,由于受污染区域、土壤背景以及高光谱质量、光谱输入量等因素影响,高光谱反演模型的适用性和精度差异较大。本研究针对湘南某多金属矿区,基于Pearson相关性分析并结合变量投影重要性(VIP)准则,提取18种变换光谱形式下的单变量特征波段及4种光谱指数算法下的优化光谱指数作为光谱输入量,建立偏最小二乘回归(PLSR)模型,实现了矿区土壤As含量反演。结果表明:倒数(RT)、对数(L)、平方根(Sqrt)、标准正态变量变换二阶导(SNV_SD)等变换后的光谱数据与As含量具有较高的相关性;优化光谱指数能从二维光谱空间揭示As的光谱响应,相较于单变量特征波段,以优化光谱指数为自变量构建的模型性能更优;比值指数(RI)模型的R_(c)^(2)、RMSE_(c)、R_(p)^(2)、RMSE_(p)、RPD分别为0.908、50.8 mg/kg、0.949、35.6 mg/kg、4.45,是研究区土壤As含量反演的最优模型。单变量特征波段结合优化光谱指数预测土壤As含量具有较好的可行性,可为多金属矿区土壤As污染高光谱快速监测提供科学依据。 展开更多
关键词 土壤重金属 高光谱遥感 光谱变换 优化光谱指数 偏最小二乘回归
下载PDF
基于MCC-GAPLS-PLSR的辣椒叶绿素含量高光谱定量反演
16
作者 王宇 汪泓 +4 位作者 肖玖军 邢丹 李可相 张永亮 岳延滨 《江苏农业学报》 CSCD 北大核心 2024年第5期865-873,共9页
为了准确监测辣椒生长,本研究对辣椒冠层光谱反射率进行对数处理、倒数处理、倒数的对数处理、连续统去除处理、一阶微分处理、二阶微分处理,并与SPAD值进行相关性分析,用最大相关系数法(MCC)选取相关性较好的特征波段生成特征波段数据... 为了准确监测辣椒生长,本研究对辣椒冠层光谱反射率进行对数处理、倒数处理、倒数的对数处理、连续统去除处理、一阶微分处理、二阶微分处理,并与SPAD值进行相关性分析,用最大相关系数法(MCC)选取相关性较好的特征波段生成特征波段数据集,再用遗传算法-偏最小二乘法(GAPLS)进行降维得到最优特征波段组合,采用偏最小二乘法(PLSR)、反向传播神经网络(BPNN)、随机森林(RF)和最小二乘支持向量机(LSSVM)4种机器学习算法构建辣椒叶绿素含量反演模型。结果表明,最优波段和对应处理分别为700 nm(原始光谱)、699 nm(对数处理)、713 nm(连续统去除处理)、500 nm(二阶微分处理)、713 nm(二阶微分处理)。GAPLS的降维效果较好,与降维前相比PLSR模型的精度提升率最高,R^(2)、RPD分别提升了82.22%、136.98%,RMSE降低了29.96%。4种模型中,GAPLS降维处理后的PLSR模型的精度最好,R^(2)、RMSE和RPD分别为0.82、1.94、4.55。本研究构建的MCC-GAPLS-PLSR模型具有较好的反演潜力,适用于研究区辣椒叶片叶绿素含量测定,推动辣椒高效种植。 展开更多
关键词 叶绿素含量 辣椒 高光谱 光谱变换 遗传算法-偏最小二乘法
下载PDF
基于OPLS-DA模型的雪茄烟叶香气差异分析
17
作者 卢绍浩 谢永恒 +6 位作者 许利平 刘崇盛 吴兆明 张丽娜 许高燕 赵振杰 高阳 《中国农业科技导报》 CAS CSCD 北大核心 2024年第12期176-186,共11页
为探究不同品种雪茄烟叶香气品质的差异,采用气相色谱-质谱联用仪(gas chromatography-mass spectrometry,GC-MS)对德雪1号、德雪3号和德雪5号香气成分进行分析,并进行正交偏最小二乘法判别分析(orthogonal partial least squares discr... 为探究不同品种雪茄烟叶香气品质的差异,采用气相色谱-质谱联用仪(gas chromatography-mass spectrometry,GC-MS)对德雪1号、德雪3号和德雪5号香气成分进行分析,并进行正交偏最小二乘法判别分析(orthogonal partial least squares discriminant analysis,OPLS-DA)。结果表明,品种间烟叶香气物质的种类基本一致,而香气物质含量却存在差异,其中德雪1号烟叶中巨豆三烯酮、β-环柠檬醛、苯甲醛和2,6-壬二烯醛含量较高,二氢猕猴桃内酯、2-乙酰基呋喃、茄酮和新植二烯含量较低;德雪3号中呋喃类化合物和新植二烯含量较高;德雪5号中二氢猕猴桃内酯、茄酮和愈创木酚含量较高。通过30个香气成分构建了OPLS-DA模型,其中自变量拟合指数(R2X)、因变量拟合指数(R2Y)和模型预测指数(Q2)分别为0.806、0.993和0.988,交叉验证方差分析(cross validation analysis of variance,CV-ANOVA)检验结果F为179.76(P<0.05),且通过200次置换验证发现模型未出现过拟合现象,表明模型显著可靠。模型从30个香气成分中筛选出了8个差异香气物质,可用于雪茄品种的区分。以上结果为阐明不同品种雪茄烟叶的香气特征提供理论参考。 展开更多
关键词 雪茄烟叶 香气成分 正交偏最小二乘法 品种判别
下载PDF
基于PCA-HCA联合PLS回归模型的蚯蚓粪肥品质等级划分
18
作者 王孔檀 麦力文 +6 位作者 王定美 彭实亮 王熊飞 蒙赜 余小兰 林嘉聪 李勤奋 《中国土壤与肥料》 CAS CSCD 北大核心 2024年第8期198-210,共13页
蚯蚓粪肥理化特性涉及指标多,如何从众多易检测的指标中筛选出能够反映蚯蚓粪肥特点的关键指标,进而用于构建评价模型,高效、快速地评价蚯蚓粪肥的品质等级,是蚯蚓粪肥应用前亟需解决的重要问题与难点。研究针对不同原料类型、不同蚯蚓... 蚯蚓粪肥理化特性涉及指标多,如何从众多易检测的指标中筛选出能够反映蚯蚓粪肥特点的关键指标,进而用于构建评价模型,高效、快速地评价蚯蚓粪肥的品质等级,是蚯蚓粪肥应用前亟需解决的重要问题与难点。研究针对不同原料类型、不同蚯蚓堆肥时间获得的蚯蚓粪肥,采用统计学与化学计量学对蚯蚓粪肥23个主要指标开展描述统计与相关分析,筛选出了13个蚯蚓粪肥特异性指标。以13个关键指标为基础,首先,结合主成分分析(PCA)与分层聚类分析(HCA)对不同蚯蚓粪肥样品开展品质初级划分;其次,采用偏最小二乘回归(PLS)-判别分析(DA)对分级结果进行效果判定;最后,整体构建基于PLS模型的蚯蚓粪肥等级评价方法并开展验证分析。结果表明:PCA与HCA分析法可将蚯蚓粪肥划分为3个品质等级,通过PLS-DA判别该划分结果合理有效,形成了基于PLS蚯蚓粪肥等级评价模型:蚯蚓粪肥品质等级(Y)=3.0796+0.0026×TOC-0.1381×HS-0.1446×HA-0.1378×TN-0.1355×TP-0.1494×AK-0.1324×AN-0.1402×AP+0.0004×EOC+0.03985×ROC+0.07685×C/N-0.0049×Kos-0.1481×HI(TOC、HS、HA、TN、TP、AK、AN、AP、EOC、ROC、C/N、Kos、HI分别代表总有机碳、腐殖质碳、胡敏酸、总氮、总磷、速效钾、碱解氮、有效磷、易氧化有机碳、难氧化有机碳、碳氮比、氧化稳定系数、腐殖化指数),分级标准为:若Y在0.45~1.56之间,品质等级为一等品;Y在1.63~2.20之间,为二等品;Y在2.28~3.72之间,为三等品。变量权重值表明影响蚯蚓粪肥品质前5的关键指标顺序为HI>TN>HS>HA>AN。研究成功建立了一套“PCA+HCA+PLS”的蚯蚓粪肥品质评价方法,对蚯蚓粪肥分级应用与规范蚯蚓产业市场具有重要意义。 展开更多
关键词 蚯蚓粪肥 等级评价 主成分分析 分层聚类分析 偏最小二乘回归分析
下载PDF
Characterizing and estimating rice brown spot disease severity using stepwise regression,principal component regression and partial least-square regression 被引量:13
19
作者 LIU Zhan-yu1, HUANG Jing-feng1, SHI Jing-jing1, TAO Rong-xiang2, ZHOU Wan3, ZHANG Li-li3 (1Institute of Agriculture Remote Sensing and Information System Application, Zhejiang University, Hangzhou 310029, China) (2Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China) (3Plant Inspection Station of Hangzhou City, Hangzhou 310020, China) 《Journal of Zhejiang University-Science B(Biomedicine & Biotechnology)》 SCIE CAS CSCD 2007年第10期738-744,共7页
Detecting plant health conditions plays a key role in farm pest management and crop protection. In this study, measurement of hyperspectral leaf reflectance in rice crop (Oryzasativa L.) was conducted on groups of hea... Detecting plant health conditions plays a key role in farm pest management and crop protection. In this study, measurement of hyperspectral leaf reflectance in rice crop (Oryzasativa L.) was conducted on groups of healthy and infected leaves by the fungus Bipolaris oryzae (Helminthosporium oryzae Breda. de Hann) through the wavelength range from 350 to 2 500 nm. The percentage of leaf surface lesions was estimated and defined as the disease severity. Statistical methods like multiple stepwise regression, principal component analysis and partial least-square regression were utilized to calculate and estimate the disease severity of rice brown spot at the leaf level. Our results revealed that multiple stepwise linear regressions could efficiently estimate disease severity with three wavebands in seven steps. The root mean square errors (RMSEs) for training (n=210) and testing (n=53) dataset were 6.5% and 5.8%, respectively. Principal component analysis showed that the first principal component could explain approximately 80% of the variance of the original hyperspectral reflectance. The regression model with the first two principal components predicted a disease severity with RMSEs of 16.3% and 13.9% for the training and testing dataset, respec-tively. Partial least-square regression with seven extracted factors could most effectively predict disease severity compared with other statistical methods with RMSEs of 4.1% and 2.0% for the training and testing dataset, respectively. Our research demon-strates that it is feasible to estimate the disease severity of rice brown spot using hyperspectral reflectance data at the leaf level. 展开更多
关键词 HYPERSPECTRAL reflectance Rice BROWN SPOT partial least-square (pls) regression STEPWISE regression Principal component regression (PCR)
下载PDF
基于PLS-DA和LS-SVM的可见/短波近红外光谱鉴定港种四九、十月红和九月鲜菜心种子的可行性研究
20
作者 章海亮 聂训 +5 位作者 廖少敏 詹白勺 罗微 刘书玲 刘雪梅 谢潮勇 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2024年第6期1718-1723,共6页
目前市面上菜心的品种复杂,不同菜心种子的品质与发芽率不同,但菜心种子单从外观上差别不大,因此区分菜心种子的类别成为了一大难题。为了实现菜心种子类别的快速区分,探究了基于可见/短波近红外光谱分析菜心种子类别的可行性。从南昌... 目前市面上菜心的品种复杂,不同菜心种子的品质与发芽率不同,但菜心种子单从外观上差别不大,因此区分菜心种子的类别成为了一大难题。为了实现菜心种子类别的快速区分,探究了基于可见/短波近红外光谱分析菜心种子类别的可行性。从南昌市种子交易场所购买了港种四九、十月红和九月鲜三个品种的菜心种子,从中挑选出品相较好且大小适中的子粒,将每种菜心种子均匀分为30份,按照2∶1划分为建模集和预测集,所有样本共计90份。通过近红外光谱仪获取采样间隔为1 nm的菜心种子的光谱反射率,波长覆盖范围325~1075 nm,将原始光谱数据采用多元散射校正(MSC)、卷积平滑(S-G)和标准正态变换(SNV)三种预处理方法进行预处理,预处理后的光谱变量建立偏最小二乘回归(PLSR)模型,确定了SNV是最佳预处理方法。采用主成分分析(PCA)对菜心种子进行了聚类分析,从前三个主成分因子(PCs)得分图可知三种菜心种子存在光谱特征差异。将原始光谱变量、前三个PCs(累计贡献97.15%)和基于随机蛙跳(RF)算法挑选的13个特征波长作为偏最小二乘判别(PLS-DA)和最小二乘支持向量机(LS-SVM)模型的输入变量,从模型结果可知:三种输入变量中,采用RF筛选特征波长作为模型输入变量时,模型预测效果最好,PCs建立的模型最差,相比于PCA分析,采用RF筛选出的特征波长更能够反映原始光谱信息。比较不同模型预测效果,LS-SVM模型比PLS-DA模型得到的预测精度更好,其中RF-LS-SVM模型是所有模型中最佳的预测模型,建模集和预测集均为100%。采用可见/短波近红外光谱研究菜心种子的类别可行,并且能够获得很好地预测效果,为菜心种子的快速区分提供了理论依据。 展开更多
关键词 菜心种子 主成分分析 随机青蛙 偏最小二乘判别 最小二乘支持向量机
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部