This study aims to assess and compare levels of particulate matter(PM10 and PM2.5)in urban and industrial areas in Malaysia during haze episodes,which typically occur in the south west monsoon season.The high concentr...This study aims to assess and compare levels of particulate matter(PM10 and PM2.5)in urban and industrial areas in Malaysia during haze episodes,which typically occur in the south west monsoon season.The high concentrations of atmospheric particles are mainly due to pollution from neighbouring countries.Daily PM concentrations were analysed for urban and industrial areas including Alor Setar,Tasek,Shah Alam,Klang,Bandaraya Melaka,Larkin,Balok Baru,and Kuala Terengganu in 2018 and 2019.The analysis employed spatiotemporal to examine how PM levels were distributed.The data summary revealed that PM levels in all study areas were right-skewed,indicating the occurrence of high particulate events.Significant peaks in PM concentrations during haze events were consistently observed between June and October,encompassing the south west monsoon and inter-monsoon periods.The study on acute respiratory illnesses primarily focused on Selangor.Analysis revealed that Klang had the highest mean number of inpatient cases for acute exacerbation of bronchial asthma(AEBA)and acute exacerbation of chronic obstructive pulmonary disease(AECOPD)with values of 260.500 and 185.170,respectively.Similarly,for outpatient cases of AEBA and AECOPD,Klang had the highest average values of 41.67 and 14.00,respectively.Shah Alam and Sungai Buloh did not show a significant increase in cases during periods of biomass burning.The statistical analysis concluded that higher concentrations of PM were associated with increased hospital admissions,particularly from June to September,as shown in the bar diagram.Haze episodes were associated with more healthcare utilization due to haze-related respiratory illnesses,seen in higher inpatient and outpatient visits(p<0.05).However,seasonal variability had minimal impact on healthcare utilization.These findings offer a comprehensive assessment of PM levels during historic haze episodes,providing valuable insights for authorities to develop policies and guidelines for effective monitoring and mitigation of the negative impacts of haze events.展开更多
[Objective]The research aimed to understand the levels of indoor air particles of PM_(10) and PM_(2.5)in public places in Chaoyang District of Beijing City,which will provide scientific basis for making health standar...[Objective]The research aimed to understand the levels of indoor air particles of PM_(10) and PM_(2.5)in public places in Chaoyang District of Beijing City,which will provide scientific basis for making health standards and policies and regulations of indoor air particulate matter in public places.[Method]In order to characterize indoor air quality of public places,shopping mall near the walking street,shopping mall near arterial traffic,barbecue style restaurant and eat hutch unicom Chinese restaurant were selected for this study.LD-3Claser measuring dust detector and Sidepak AM-510 artificial intelligence anti-explosion dust detector were used to test the levels of PM_(10) and PM_(2.5)in the air of the shopping malls and restaurants.The number of smoking customers and if smelling the smoke were recorded simultaneously.[Result]The average densities of PM_(10) and PM_(2.5)in the shopping mall near the walking street were noticeably lower than that near arterial traffic(P< 0.05).The highest level of PM_(2.5)at the barbecue style restaurant and eating hutch unicom Chinese restaurants were 1 090and666g/m^3.The average levels of PM_(10) at the barbecue style restaurant and eating hutch unicom restaurants were 286 and 399g/m3(P<0.05).[Conclusion]The indoor PM_(10) and PM_(2.5)concentrations were high in public places,especially in shopping mall near arterial traffic and restaurant.It should be enhanced to supervise indoor air in public places and establish the risk rating of indoor air quality to protect public health.展开更多
Objective To investigate the seasonal characteristics and the sources of elements and ions with different sizes in the aerosols in Beijing. Methods Samples of particulate matters (PM2,5), PM10, and total suspended p...Objective To investigate the seasonal characteristics and the sources of elements and ions with different sizes in the aerosols in Beijing. Methods Samples of particulate matters (PM2,5), PM10, and total suspended particle (TSP) aerosols were collected simultaneously in Beijing from July 2001 to April 2003. The aerosol was chemically characterized by measuring 23 elements and 18 water-soluble ions by inductively coupled plasma-atomic emission spectroscopy (ICP-AES) and ion chromatography (IC), respectively. Results The samples were divided into four categories: spring non-dust, spring dust, summer dust, and winter dust. TSP, PM10, and PM2.5 were most abundant in the spring dust, and the least in summer dust. The average mass ratios of PM〉10, PM2,5-10, and PM2.5 to TSP confirmed that in the spring dust both the large coarse (PM〉10) and fine particles (PM2.5) contributed significantly in summer PM2.5, PM2,5-10, and PM〉10 contributed similar fractions to TSP, and in winter much PM2.5. The seasonal variation characteristics of the elements and ions were used to divide them into four groups: crustal, pollutant, mixed, and secondary. The highest levels of crustal elements, such as AI, Fe, and Ca, were found in the dust season, the highest levels of pollutant elements and ions, such as As, F, and Cl^-, were observed in winter, and the highest levels of secondary ions (SO4^2-, NO3^-, and NH4^+) were seen both in summer and in winter. The mixed group (Eu, Ni, and Cu) showed the characteristics of both crustal and pollutant elements. The mineral aerosol from outside Beijiug contributed more than that from the local part in all the reasons but summer, estimated using a newly developed element tracer technique.展开更多
Air pollution causes deleterious effects on human health with aerosols being among the most polluting agents.The objective of this work is the characterization of the PM2.5 and PM10 aerosol mass in the atmosphere.The ...Air pollution causes deleterious effects on human health with aerosols being among the most polluting agents.The objective of this work is the characterization of the PM2.5 and PM10 aerosol mass in the atmosphere.The methods of analysis include WD-XRF and EDS.Data were correlated with meteorological information and air mass trajectories(model HYSPLIT)by multivariate analysis.A morphological structural analysis was also carried out to identify the probable sources of atmospheric aerosols in the city of Sao Jose do Rio Preto,Brazil.The mean mass concentration values obtained were 24.54 μg/m^3 for PM10,above the WHO annual standard value of 20 μg/m^3 and 10.88 μg/m^3 for PM2.5 whose WHO recommended limit is10 μg/m^3.WD-XRF analysis of the samples revealed Si and Al as major components of the coarse fraction.In the fine fraction,the major elements were Al and S.The SEM-FEG characterization allowed identifying the morphology of the particles in agglomerates,ellipsoids and filaments in the PM10,besides spherical in the PM2.5.The analysis by EDS corroborated WD-XRF results,identifying the crustal elements,aluminosilicates and elements of anthropogenic origin in the coarse fraction.For the fine fraction crustal elements were also identified;aluminosilicates,black carbon and spherical particles(C and O) originating from combustion processes were predominant.The use of multivariate analysis to correlate air mass trajectories with the results of the morpho-structural characterization of the particulate matter allowed confirmation of the complex composition of the particles resulting from the combination of both local and long-distance sources.展开更多
考虑在函数型解释变量部分观测的情况下,用函数线性模型刻画与标量响应变量的关系.基于函数型主成分分析(Functional Principal Component Analysis,简称FPCA)实现了对缺失部分样本的重构,并通过实证分析,对一组北京市2010-2014年间统...考虑在函数型解释变量部分观测的情况下,用函数线性模型刻画与标量响应变量的关系.基于函数型主成分分析(Functional Principal Component Analysis,简称FPCA)实现了对缺失部分样本的重构,并通过实证分析,对一组北京市2010-2014年间统计的包括部分观测PM2.5数值的气象数据,分析了PM2.5作为部分观测函数型解释变量对标量响应变量平均气温的影响,结果表明了该方法具有处理缺失函数数据的现实意义.展开更多
This research study quantifies the PM<sub>10</sub> emission rates (g/s) from cement silos in 25 concrete batching facilities for both controlled and uncontrolled scenarios by applying the USEPA AP-42 guide...This research study quantifies the PM<sub>10</sub> emission rates (g/s) from cement silos in 25 concrete batching facilities for both controlled and uncontrolled scenarios by applying the USEPA AP-42 guidelines step-by-step approach. The study focuses on evaluating the potential environmental impact of cement dust fugitive emissions from 176 cement silos located in 25 concrete batching facilities in the M35 Mussafah industrial area of Abu Dhabi, UAE. Emission factors are crucial for quantifying the PM<sub>10</sub> emission rates (g/s) that support developing source-specific emission estimates for areawide inventories to identify major sources of pollution that provide screening sources for compliance monitoring and air dispersion modeling. This requires data to be collected involves information on production, raw material usage, energy consumption, and process-related details, this was obtained using various methods, including field visits, surveys, and interviews with facility representatives to calculate emission rates accurately. Statistical analysis was conducted on cement consumption and emission rates for controlled and uncontrolled sources of the targeted facilities. The data shows that the average cement consumption among the facilities is approximately 88,160 (MT/yr), with a wide range of variation depending on the facility size and production rate. The emission rates from controlled sources have an average of 4.752E<sup>-04</sup> (g/s), while the rates from uncontrolled sources average 0.6716 (g/s). The analysis shows a significant statistical relationship (p < 0.05) and perfect positive correlation (r = 1) between cement consumption and emission rates, indicating that as cement consumption increases, emission rates tend to increase as well. Furthermore, comparing the emission rates from controlled and uncontrolled scenarios. The data showed a significant difference between the two scenarios, highlighting the effectiveness of control measures in reducing PM<sub>10</sub> emissions. The study’s findings provide insights into the impact of cement silo emissions on air quality and the importance of implementing control measures in concrete batching facilities. The comparative analysis contributes to understanding emission sources and supports the development of pollution control strategies in the Ready-Mix industry.展开更多
文摘This study aims to assess and compare levels of particulate matter(PM10 and PM2.5)in urban and industrial areas in Malaysia during haze episodes,which typically occur in the south west monsoon season.The high concentrations of atmospheric particles are mainly due to pollution from neighbouring countries.Daily PM concentrations were analysed for urban and industrial areas including Alor Setar,Tasek,Shah Alam,Klang,Bandaraya Melaka,Larkin,Balok Baru,and Kuala Terengganu in 2018 and 2019.The analysis employed spatiotemporal to examine how PM levels were distributed.The data summary revealed that PM levels in all study areas were right-skewed,indicating the occurrence of high particulate events.Significant peaks in PM concentrations during haze events were consistently observed between June and October,encompassing the south west monsoon and inter-monsoon periods.The study on acute respiratory illnesses primarily focused on Selangor.Analysis revealed that Klang had the highest mean number of inpatient cases for acute exacerbation of bronchial asthma(AEBA)and acute exacerbation of chronic obstructive pulmonary disease(AECOPD)with values of 260.500 and 185.170,respectively.Similarly,for outpatient cases of AEBA and AECOPD,Klang had the highest average values of 41.67 and 14.00,respectively.Shah Alam and Sungai Buloh did not show a significant increase in cases during periods of biomass burning.The statistical analysis concluded that higher concentrations of PM were associated with increased hospital admissions,particularly from June to September,as shown in the bar diagram.Haze episodes were associated with more healthcare utilization due to haze-related respiratory illnesses,seen in higher inpatient and outpatient visits(p<0.05).However,seasonal variability had minimal impact on healthcare utilization.These findings offer a comprehensive assessment of PM levels during historic haze episodes,providing valuable insights for authorities to develop policies and guidelines for effective monitoring and mitigation of the negative impacts of haze events.
文摘[Objective]The research aimed to understand the levels of indoor air particles of PM_(10) and PM_(2.5)in public places in Chaoyang District of Beijing City,which will provide scientific basis for making health standards and policies and regulations of indoor air particulate matter in public places.[Method]In order to characterize indoor air quality of public places,shopping mall near the walking street,shopping mall near arterial traffic,barbecue style restaurant and eat hutch unicom Chinese restaurant were selected for this study.LD-3Claser measuring dust detector and Sidepak AM-510 artificial intelligence anti-explosion dust detector were used to test the levels of PM_(10) and PM_(2.5)in the air of the shopping malls and restaurants.The number of smoking customers and if smelling the smoke were recorded simultaneously.[Result]The average densities of PM_(10) and PM_(2.5)in the shopping mall near the walking street were noticeably lower than that near arterial traffic(P< 0.05).The highest level of PM_(2.5)at the barbecue style restaurant and eating hutch unicom Chinese restaurants were 1 090and666g/m^3.The average levels of PM_(10) at the barbecue style restaurant and eating hutch unicom restaurants were 286 and 399g/m3(P<0.05).[Conclusion]The indoor PM_(10) and PM_(2.5)concentrations were high in public places,especially in shopping mall near arterial traffic and restaurant.It should be enhanced to supervise indoor air in public places and establish the risk rating of indoor air quality to protect public health.
基金This work was supported by the National Natural Science Foundation of China (Grant No. 29837190, 30230310, 20077004, and 20477004),and Beijing Natural Science Foundation (Grant No. 8991002 and 8041003).
文摘Objective To investigate the seasonal characteristics and the sources of elements and ions with different sizes in the aerosols in Beijing. Methods Samples of particulate matters (PM2,5), PM10, and total suspended particle (TSP) aerosols were collected simultaneously in Beijing from July 2001 to April 2003. The aerosol was chemically characterized by measuring 23 elements and 18 water-soluble ions by inductively coupled plasma-atomic emission spectroscopy (ICP-AES) and ion chromatography (IC), respectively. Results The samples were divided into four categories: spring non-dust, spring dust, summer dust, and winter dust. TSP, PM10, and PM2.5 were most abundant in the spring dust, and the least in summer dust. The average mass ratios of PM〉10, PM2,5-10, and PM2.5 to TSP confirmed that in the spring dust both the large coarse (PM〉10) and fine particles (PM2.5) contributed significantly in summer PM2.5, PM2,5-10, and PM〉10 contributed similar fractions to TSP, and in winter much PM2.5. The seasonal variation characteristics of the elements and ions were used to divide them into four groups: crustal, pollutant, mixed, and secondary. The highest levels of crustal elements, such as AI, Fe, and Ca, were found in the dust season, the highest levels of pollutant elements and ions, such as As, F, and Cl^-, were observed in winter, and the highest levels of secondary ions (SO4^2-, NO3^-, and NH4^+) were seen both in summer and in winter. The mixed group (Eu, Ni, and Cu) showed the characteristics of both crustal and pollutant elements. The mineral aerosol from outside Beijiug contributed more than that from the local part in all the reasons but summer, estimated using a newly developed element tracer technique.
基金supported by CAPES (scholarship),PROPGUNESP Foundation (Brazil) and Portuguese Foundation for Science and Technology (FCT) through the project UID/QUI/ 00100/2019.
文摘Air pollution causes deleterious effects on human health with aerosols being among the most polluting agents.The objective of this work is the characterization of the PM2.5 and PM10 aerosol mass in the atmosphere.The methods of analysis include WD-XRF and EDS.Data were correlated with meteorological information and air mass trajectories(model HYSPLIT)by multivariate analysis.A morphological structural analysis was also carried out to identify the probable sources of atmospheric aerosols in the city of Sao Jose do Rio Preto,Brazil.The mean mass concentration values obtained were 24.54 μg/m^3 for PM10,above the WHO annual standard value of 20 μg/m^3 and 10.88 μg/m^3 for PM2.5 whose WHO recommended limit is10 μg/m^3.WD-XRF analysis of the samples revealed Si and Al as major components of the coarse fraction.In the fine fraction,the major elements were Al and S.The SEM-FEG characterization allowed identifying the morphology of the particles in agglomerates,ellipsoids and filaments in the PM10,besides spherical in the PM2.5.The analysis by EDS corroborated WD-XRF results,identifying the crustal elements,aluminosilicates and elements of anthropogenic origin in the coarse fraction.For the fine fraction crustal elements were also identified;aluminosilicates,black carbon and spherical particles(C and O) originating from combustion processes were predominant.The use of multivariate analysis to correlate air mass trajectories with the results of the morpho-structural characterization of the particulate matter allowed confirmation of the complex composition of the particles resulting from the combination of both local and long-distance sources.
文摘考虑在函数型解释变量部分观测的情况下,用函数线性模型刻画与标量响应变量的关系.基于函数型主成分分析(Functional Principal Component Analysis,简称FPCA)实现了对缺失部分样本的重构,并通过实证分析,对一组北京市2010-2014年间统计的包括部分观测PM2.5数值的气象数据,分析了PM2.5作为部分观测函数型解释变量对标量响应变量平均气温的影响,结果表明了该方法具有处理缺失函数数据的现实意义.
文摘This research study quantifies the PM<sub>10</sub> emission rates (g/s) from cement silos in 25 concrete batching facilities for both controlled and uncontrolled scenarios by applying the USEPA AP-42 guidelines step-by-step approach. The study focuses on evaluating the potential environmental impact of cement dust fugitive emissions from 176 cement silos located in 25 concrete batching facilities in the M35 Mussafah industrial area of Abu Dhabi, UAE. Emission factors are crucial for quantifying the PM<sub>10</sub> emission rates (g/s) that support developing source-specific emission estimates for areawide inventories to identify major sources of pollution that provide screening sources for compliance monitoring and air dispersion modeling. This requires data to be collected involves information on production, raw material usage, energy consumption, and process-related details, this was obtained using various methods, including field visits, surveys, and interviews with facility representatives to calculate emission rates accurately. Statistical analysis was conducted on cement consumption and emission rates for controlled and uncontrolled sources of the targeted facilities. The data shows that the average cement consumption among the facilities is approximately 88,160 (MT/yr), with a wide range of variation depending on the facility size and production rate. The emission rates from controlled sources have an average of 4.752E<sup>-04</sup> (g/s), while the rates from uncontrolled sources average 0.6716 (g/s). The analysis shows a significant statistical relationship (p < 0.05) and perfect positive correlation (r = 1) between cement consumption and emission rates, indicating that as cement consumption increases, emission rates tend to increase as well. Furthermore, comparing the emission rates from controlled and uncontrolled scenarios. The data showed a significant difference between the two scenarios, highlighting the effectiveness of control measures in reducing PM<sub>10</sub> emissions. The study’s findings provide insights into the impact of cement silo emissions on air quality and the importance of implementing control measures in concrete batching facilities. The comparative analysis contributes to understanding emission sources and supports the development of pollution control strategies in the Ready-Mix industry.