Lima is the capital of the Republic of Peru. It is the most important city in the country and as other Latin America metropolises have multiple problems, including air pollution due to particulate material above air q...Lima is the capital of the Republic of Peru. It is the most important city in the country and as other Latin America metropolises have multiple problems, including air pollution due to particulate material above air quality standards, emitted by 1.6 million vehicles. The “on-line” coupled model of meteorology and chemistry of transport and meteorological/chemistry, WRF/Chem (Weather and Research Forecasting with Chemistry) has been used in the Lima Metropolitan Area, and validated against data observed at ground level with ten air quality stations of the National Service of Meteorology and Hydrology for the year 2016. The goal of this study was to estimate the concentration of PM2.5 particulate matter in the months of February and July of 2016. In both months, the model satisfactorily predicts temperature and relative humidity. The average observed PM2.5 concentrations in the month of July are higher than in February, probably because the relative humidity in July is greater than the relative humidity in February. In the months of February and July the standard observed deviations of the model have a factor of 2.4 and 3.7 respectively, indicating a greater dispersion in the data of the model. In the month of July, the model captures the characteristics of transport, shows characteristic peaks during peak hours, therefore, the model estimates transport behavior better in July than in February. The quality of the air is strongly influenced by the vehicular transport. The PM2.5 particulate material in February had an average bias that varied from [?13.2 to 4.4 μg/m3] and in July [?9.63 to 11.65 μg/m3] and a normalized average bias in February that varied from [?0.68 to 0.43] and in July of [?0.46 to 0.48].展开更多
Epidemiological studies have demonstrated that chronic exposure to polluted concentration of fine ambient particulate matter(PM2.5)can induce markedly harmful effects on human health,however,an enormous research effor...Epidemiological studies have demonstrated that chronic exposure to polluted concentration of fine ambient particulate matter(PM2.5)can induce markedly harmful effects on human health,however,an enormous research effort is still need to the comprehensive understanding of PM2.5 induction of new negative health outcomes.Recently,Maher and colleges[1]from Environmental Magnetism and Paleomagnetism at Lancaster University展开更多
In this work, receptor models were used to identify the PM2.5 sources and its contribution to the air quality in residential, comercial and industrial sampling sites in the Metropolitan Area of Costa Rica. Principal c...In this work, receptor models were used to identify the PM2.5 sources and its contribution to the air quality in residential, comercial and industrial sampling sites in the Metropolitan Area of Costa Rica. Principal component analysis with absolute principal component scores (PCA-APCS), UNIMX and positive matrix factorization (PMF) was applied to analyze the data collected during 1 year of sampling campaign (2010-2011). The PM2.5 samples were characterized through its composition looking for trace elements, inorganic ions and organic and elemental carbon. These three models identified some common sources of PM2.5: marine aerosol, crustal material, traffic, secondary aerosols (secondary sulfate and secondary nitrate resolved by PMF), a mixed source of heavy fuels combustion and biomass burning, and industrial emissions. The three models predicted that the major sources of PM2.5 in the Metropolitan Area of Costa Rica were related to anthropogenic sources (73%, 65% and 69%, respectively, for PCA-APCS, Unmix and PMF) although natural sources also contributed to PM2.5 (21%, 24% and 26%). On average, PCA and PMF methods resolved 94% and 95% of the PM2.5 mass concentrations, respectively. The results were comparable to the estimate using UNMIX.展开更多
通过北京市34个国控监测站点,建立0.5、1、1.5、2、3、4、5km的缓冲区,应用土地利用回归模型(Land Use Regression,LUR)对北京市采暖季与非采暖季PM_(2.5)浓度进行空间分布模拟,并采用留一交叉互验法验证模型精度。结果表明:采暖季LUR...通过北京市34个国控监测站点,建立0.5、1、1.5、2、3、4、5km的缓冲区,应用土地利用回归模型(Land Use Regression,LUR)对北京市采暖季与非采暖季PM_(2.5)浓度进行空间分布模拟,并采用留一交叉互验法验证模型精度。结果表明:采暖季LUR模型调整R^(2)为0.799,模拟精度为0.7992,均方根误差(Root Mean Square Error,RMSE)为6.66μg·m^(-3);非采暖季LUR模型调整R^(2)为0.807,模拟精度为0.8198,均方根误差为5.91μg·m^(-3),模型表现良好。从模拟结果来看,北京市PM_(2.5)主要分布在东南部人口、交通密集的平原区域,整体呈现南高北低的状态。展开更多
为弥补结合相关测绘成果研究季节性PM2.5空间分布相对不足的问题,以京津冀为例,基于土地利用回归(Land Use Regression,LUR)模型对研究区2013年典型季节的PM2.5浓度进行模拟.采用双变量相关分析识别出与PM2.5浓度相关的影响因子,主要包...为弥补结合相关测绘成果研究季节性PM2.5空间分布相对不足的问题,以京津冀为例,基于土地利用回归(Land Use Regression,LUR)模型对研究区2013年典型季节的PM2.5浓度进行模拟.采用双变量相关分析识别出与PM2.5浓度相关的影响因子,主要包括地表覆盖分类、扬尘地表及污染企业在内的监测成果等因素,分别对夏冬两季PM2.5浓度和与之对应的影响因子进行多元线性回归分析,判定系数R^2分别为0.743和0.866.根据LUR方程计算加密点浓度值,通过反距离加权插值得到较为精细的PM2.5浓度空间分布图.结果显示,研究区两季污染物浓度都呈现出以太行山-燕山山脉为界,东部、南部地区污染严重,西部、北部地区污染较轻的态势.冬季整体的污染程度高于夏季,各城市两季PM2.5浓度变化趋势基本一致.展开更多
传统的站点监测方法虽然能够较精准地检测当地的PM2.5质量浓度,却无法实现较大范围内PM2.5质量浓度的空间分布监测。本研究提取包括气象、土地利用、地形及其他共20个影响PM2.5浓度的因子,利用土地利用回归模型(Land Use Regression,LUR...传统的站点监测方法虽然能够较精准地检测当地的PM2.5质量浓度,却无法实现较大范围内PM2.5质量浓度的空间分布监测。本研究提取包括气象、土地利用、地形及其他共20个影响PM2.5浓度的因子,利用土地利用回归模型(Land Use Regression,LUR)对浙江省近地表PM2.5质量浓度空间分布进行了预测。结果表明:基于31个站点预测整个浙江省PM2.5质量浓度时,运用地理加权(GWR)方法建立拟合方程的R2平均值(0.69)和R2Adjusted平均值(0.53)都优于运用普通最小二乘法(OLS)建立拟合方程的R2平均值(0.53)和R2Adjusted平均值(0.41),但是两者的AIC指数却没有明显差异。基于10个站点预测杭州地区的PM2.5质量浓度时,运用GWR方法建立拟合方程的R2值和R2Adjusted值都优于运用OLS方法,且GWR的AIC值变化趋势(均值-182.4)明显低于OLS值变化趋势(均值74.8)。结论表明,应用LUR模型模拟大尺度区域的近地表PM2.5浓度是有效的。基于GWR的预测方法优于OLS的预测方法。本文提供的方法对进一步研究PM2.5估测模型具有一定的参考价值。展开更多
文摘Lima is the capital of the Republic of Peru. It is the most important city in the country and as other Latin America metropolises have multiple problems, including air pollution due to particulate material above air quality standards, emitted by 1.6 million vehicles. The “on-line” coupled model of meteorology and chemistry of transport and meteorological/chemistry, WRF/Chem (Weather and Research Forecasting with Chemistry) has been used in the Lima Metropolitan Area, and validated against data observed at ground level with ten air quality stations of the National Service of Meteorology and Hydrology for the year 2016. The goal of this study was to estimate the concentration of PM2.5 particulate matter in the months of February and July of 2016. In both months, the model satisfactorily predicts temperature and relative humidity. The average observed PM2.5 concentrations in the month of July are higher than in February, probably because the relative humidity in July is greater than the relative humidity in February. In the months of February and July the standard observed deviations of the model have a factor of 2.4 and 3.7 respectively, indicating a greater dispersion in the data of the model. In the month of July, the model captures the characteristics of transport, shows characteristic peaks during peak hours, therefore, the model estimates transport behavior better in July than in February. The quality of the air is strongly influenced by the vehicular transport. The PM2.5 particulate material in February had an average bias that varied from [?13.2 to 4.4 μg/m3] and in July [?9.63 to 11.65 μg/m3] and a normalized average bias in February that varied from [?0.68 to 0.43] and in July of [?0.46 to 0.48].
文摘Epidemiological studies have demonstrated that chronic exposure to polluted concentration of fine ambient particulate matter(PM2.5)can induce markedly harmful effects on human health,however,an enormous research effort is still need to the comprehensive understanding of PM2.5 induction of new negative health outcomes.Recently,Maher and colleges[1]from Environmental Magnetism and Paleomagnetism at Lancaster University
文摘In this work, receptor models were used to identify the PM2.5 sources and its contribution to the air quality in residential, comercial and industrial sampling sites in the Metropolitan Area of Costa Rica. Principal component analysis with absolute principal component scores (PCA-APCS), UNIMX and positive matrix factorization (PMF) was applied to analyze the data collected during 1 year of sampling campaign (2010-2011). The PM2.5 samples were characterized through its composition looking for trace elements, inorganic ions and organic and elemental carbon. These three models identified some common sources of PM2.5: marine aerosol, crustal material, traffic, secondary aerosols (secondary sulfate and secondary nitrate resolved by PMF), a mixed source of heavy fuels combustion and biomass burning, and industrial emissions. The three models predicted that the major sources of PM2.5 in the Metropolitan Area of Costa Rica were related to anthropogenic sources (73%, 65% and 69%, respectively, for PCA-APCS, Unmix and PMF) although natural sources also contributed to PM2.5 (21%, 24% and 26%). On average, PCA and PMF methods resolved 94% and 95% of the PM2.5 mass concentrations, respectively. The results were comparable to the estimate using UNMIX.
文摘通过北京市34个国控监测站点,建立0.5、1、1.5、2、3、4、5km的缓冲区,应用土地利用回归模型(Land Use Regression,LUR)对北京市采暖季与非采暖季PM_(2.5)浓度进行空间分布模拟,并采用留一交叉互验法验证模型精度。结果表明:采暖季LUR模型调整R^(2)为0.799,模拟精度为0.7992,均方根误差(Root Mean Square Error,RMSE)为6.66μg·m^(-3);非采暖季LUR模型调整R^(2)为0.807,模拟精度为0.8198,均方根误差为5.91μg·m^(-3),模型表现良好。从模拟结果来看,北京市PM_(2.5)主要分布在东南部人口、交通密集的平原区域,整体呈现南高北低的状态。
文摘为弥补结合相关测绘成果研究季节性PM2.5空间分布相对不足的问题,以京津冀为例,基于土地利用回归(Land Use Regression,LUR)模型对研究区2013年典型季节的PM2.5浓度进行模拟.采用双变量相关分析识别出与PM2.5浓度相关的影响因子,主要包括地表覆盖分类、扬尘地表及污染企业在内的监测成果等因素,分别对夏冬两季PM2.5浓度和与之对应的影响因子进行多元线性回归分析,判定系数R^2分别为0.743和0.866.根据LUR方程计算加密点浓度值,通过反距离加权插值得到较为精细的PM2.5浓度空间分布图.结果显示,研究区两季污染物浓度都呈现出以太行山-燕山山脉为界,东部、南部地区污染严重,西部、北部地区污染较轻的态势.冬季整体的污染程度高于夏季,各城市两季PM2.5浓度变化趋势基本一致.
文摘传统的站点监测方法虽然能够较精准地检测当地的PM2.5质量浓度,却无法实现较大范围内PM2.5质量浓度的空间分布监测。本研究提取包括气象、土地利用、地形及其他共20个影响PM2.5浓度的因子,利用土地利用回归模型(Land Use Regression,LUR)对浙江省近地表PM2.5质量浓度空间分布进行了预测。结果表明:基于31个站点预测整个浙江省PM2.5质量浓度时,运用地理加权(GWR)方法建立拟合方程的R2平均值(0.69)和R2Adjusted平均值(0.53)都优于运用普通最小二乘法(OLS)建立拟合方程的R2平均值(0.53)和R2Adjusted平均值(0.41),但是两者的AIC指数却没有明显差异。基于10个站点预测杭州地区的PM2.5质量浓度时,运用GWR方法建立拟合方程的R2值和R2Adjusted值都优于运用OLS方法,且GWR的AIC值变化趋势(均值-182.4)明显低于OLS值变化趋势(均值74.8)。结论表明,应用LUR模型模拟大尺度区域的近地表PM2.5浓度是有效的。基于GWR的预测方法优于OLS的预测方法。本文提供的方法对进一步研究PM2.5估测模型具有一定的参考价值。