A new method for reducing the substrate rated losses of integrated spiral inductors is presented.The method is to block the eddy currents induced by spiral inductors by directly forming pn junction isolation in the S...A new method for reducing the substrate rated losses of integrated spiral inductors is presented.The method is to block the eddy currents induced by spiral inductors by directly forming pn junction isolation in the Si substrate. The substrate pn junction can be realized by using the standard silicon technologies without any additional processing steps.Integrated inductors on silicon are designed and fabricated. S parameters of the inductor based equivalent circuit are investigated and the inductor parameters are calculated.The impacts of the substrate pn junction isolation on the inductor quality factor are studied.The experimental results show that substrate pn junction isolation in certain depth has achieved a significant improvement.At 3GHz,the substrate pn junction isolation increases the inductor quality factor by 40%.展开更多
There are some new results about photovoltaic transient response in the new effect. We suggest a theoretical model to explain the effect reasonably. The theoretical calculation results agree with that in experiments.
Schottky diodes and PN junctions were utilized as energy converting structures in ZnO-based betavoltaic batteries,in which 0.101121 Ci 63Ni was selected as the beta source.The time-related electrical properties were o...Schottky diodes and PN junctions were utilized as energy converting structures in ZnO-based betavoltaic batteries,in which 0.101121 Ci 63Ni was selected as the beta source.The time-related electrical properties were obtained using Monte Carlo simulations.For the n-type ZnO,the Pt/ZnO Schottky diode had the highest energy conversion efficiency,and the Ni/ZnO Schottky diode had the largest Isc.The overall electrical performance of PN junctions is better than that of Schottky diodes.The lifetimes of Pt/ZnO and Ni/ZnO are longer than for other Schottky devices,coming close to those of PN junctions.Considering that Schottky diodes are easier to fabricate and independent of p-type semiconductors,Pt/ZnO and Ni/ZnO diodes offer alternatives to PN-junction-based betavoltaic batteries.展开更多
We report on the fabrications and characterizations of axial and radial Ga As nanowire pn junction diode arrays.The nanowires are grown on n-doped Ga As(111)B substrates using the Au-catalyzed vapor–liquid–solid m...We report on the fabrications and characterizations of axial and radial Ga As nanowire pn junction diode arrays.The nanowires are grown on n-doped Ga As(111)B substrates using the Au-catalyzed vapor–liquid–solid mechanism by metal–organic chemical vapor deposition(MOCVD). Diethyl–zinc and silane are used as p- and n-type dopant precursors,respectively. Both the axial and radial diodes exhibit diode-like J–V characteristics and have similar performances under forward bias. Under backward bias, the axial diode has a large leakage current, which is attributed to the bending of the pn junction interface induced by two doping mechanisms in Au-catalyzed nanowires. The low leakage current and high rectification ratio make the radial diode more promising in electrical and optoelectronic devices.展开更多
The absorption coefficient is usually considered as a constant for certain materials at the given wavelength.However,recent experiments demonstrated that the absorption coefficient could be enhanced a lot by the PN ju...The absorption coefficient is usually considered as a constant for certain materials at the given wavelength.However,recent experiments demonstrated that the absorption coefficient could be enhanced a lot by the PN junction.The absorption coefficient varies with the thickness of the intrinsic layer in a PIN structure.Here,we interpret the anomalous absorption coefficient from the competition between recombination and drift for non-equilibrium carriers.Based on the Fokker-Planck theory,a non-equilibrium statistical model that describes the relationship between absorption coefficient and material thickness has been proposed.It could predict the experimental data well.Our results can give new ideas to design photoelectric devices.展开更多
We study electromechanical fields near the interface between a circular piezoelectric semiconductor cylinder and another piezoelectric semiconductor in which it is embedded. The cylinder is p-doped. The surrounding ma...We study electromechanical fields near the interface between a circular piezoelectric semiconductor cylinder and another piezoelectric semiconductor in which it is embedded. The cylinder is p-doped. The surrounding material is n-doped. The phenomenological theory of piezoelectric semiconductors consisting of the equations of piezoelectricity and the conservation of charge for holes and electrons is used. The theory is linearized for small carrier concentration perturbations. An analytical solution is obtained, showing the formation of a PN junction near the interface. Various electromechanical fields associated with the junction are calculated. The effects of a few physical parameters are examined.展开更多
The unique features of ambipolar two-dimensional materials open up a great opportunity to build gate-programmable devices for reconfigurable circuit applications,e.g.,PN junctions for rectifier circuits.However,curren...The unique features of ambipolar two-dimensional materials open up a great opportunity to build gate-programmable devices for reconfigurable circuit applications,e.g.,PN junctions for rectifier circuits.However,current-reported rectifier circuits usually consist of one gate-programmable PN junction as the rectifier and one resistor as the load,which are not conductive to voltage output and large-scale integration.Here we propose an approach of complementary gate-programmable PN junctions to assemble reconfigurable rectifier circuit,which include two symmetric back-to-back black phosphorus(BP)/hexagonal boron nitride(h-BN)/graphene heterostructured semi-gate field-effect transistors(FETs)and perform complementary NP and PN junction like complementary metal-oxide-semiconductor(CMOS)circuit.The investigation exhibits that the circuit can effectively reconfigure the circuit with/without rectifying ability,and can process alternating current(AC)signals with the frequency prior 1 KHz and reconfiguration speed up to 25μs.We also achieve the reconfigurable rectifier circuit memory via complementary semi-floating gate FETs configuration.The complementary configuration here should be of low output impedance and low static power consumption,being beneficial for effective voltage output and large-scale integration.展开更多
Pn junctions based on single crystalline tellurium supersaturated silicon were formed by ion implantation followed by pulsed laser melting(PLM).P type silicon wafers were implanted with 245 keV ^126Te^+ to a dose o...Pn junctions based on single crystalline tellurium supersaturated silicon were formed by ion implantation followed by pulsed laser melting(PLM).P type silicon wafers were implanted with 245 keV ^126Te^+ to a dose of 2×10^15 ions/cm^2,after a PLM process(248 nm,laser fluence of 0.30 and 0.35 J/cm^2,1-5 pulses,duration 30 ns),an n^+ type single crystalline tellurium supersaturated silicon layer with high carrier density(highest concentration 4.10×10^19 cm^3,three orders of magnitude larger than the solid solution limit) was formed,it shows high broadband optical absorption from 400 to 2500 nm.Current-voltage measurements were performed on these diodes under dark and one standard sun(AM 1.5),and good rectification characteristics were observed.For present results,the samples with 4-5 pulses PLM are best.展开更多
The electrical nonlinearity of silicon modulators based on reversed PN junctions was found to severely limit the linearity of the modulators.This effect,however,was inadvertently neglected in previous studies.Consider...The electrical nonlinearity of silicon modulators based on reversed PN junctions was found to severely limit the linearity of the modulators.This effect,however,was inadvertently neglected in previous studies.Considering the electrical nonlinearity in simulation,a 32.2 dB degradation in the CDR3(i.e.,the suppression ratio between the fundamental signal and intermodulation distortion)of the modulator was observed at a modulation speed of 12 GHz,and the spurious free dynamic range was simultaneously degraded by 17.4 dB.It was also found that the linearity of the silicon modulator could be improved by reducing the series resistance of the PN junction.The frequency dependence of the linearity due to the electrical nonlinearity was also investigated.展开更多
The PN junction photodiode is fabricated with high resistivity P-type silicon ( ρ =12 000 Ω·cm).The experimental C-V curves with and without laser radiation were measured.The relative change of capacitanc...The PN junction photodiode is fabricated with high resistivity P-type silicon ( ρ =12 000 Ω·cm).The experimental C-V curves with and without laser radiation were measured.The relative change of capacitance can be greater than 100%,which is much greater than the relative change for low resistivity P-type silicon.The relative change of capacitance with and without laser radiation at zero bias is 121.7%.展开更多
文摘A new method for reducing the substrate rated losses of integrated spiral inductors is presented.The method is to block the eddy currents induced by spiral inductors by directly forming pn junction isolation in the Si substrate. The substrate pn junction can be realized by using the standard silicon technologies without any additional processing steps.Integrated inductors on silicon are designed and fabricated. S parameters of the inductor based equivalent circuit are investigated and the inductor parameters are calculated.The impacts of the substrate pn junction isolation on the inductor quality factor are studied.The experimental results show that substrate pn junction isolation in certain depth has achieved a significant improvement.At 3GHz,the substrate pn junction isolation increases the inductor quality factor by 40%.
文摘There are some new results about photovoltaic transient response in the new effect. We suggest a theoretical model to explain the effect reasonably. The theoretical calculation results agree with that in experiments.
基金supported by the National Major Scientific Instruments and Equipment Development Projects(No.2012YQ240121)National Natural Science Foundation of China(No.11075064)
文摘Schottky diodes and PN junctions were utilized as energy converting structures in ZnO-based betavoltaic batteries,in which 0.101121 Ci 63Ni was selected as the beta source.The time-related electrical properties were obtained using Monte Carlo simulations.For the n-type ZnO,the Pt/ZnO Schottky diode had the highest energy conversion efficiency,and the Ni/ZnO Schottky diode had the largest Isc.The overall electrical performance of PN junctions is better than that of Schottky diodes.The lifetimes of Pt/ZnO and Ni/ZnO are longer than for other Schottky devices,coming close to those of PN junctions.Considering that Schottky diodes are easier to fabricate and independent of p-type semiconductors,Pt/ZnO and Ni/ZnO diodes offer alternatives to PN-junction-based betavoltaic batteries.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61376019 and 61020106007)the Specialized Research Fund for the Doctoral Program of Higher Education of China(Grant No.20120005110011)+2 种基金the Natural Science Foundation of Beijing(Grant No.4142038)the 111 Program of China(Grant No.B07005)the Fund of the State Key Laboratory of Information Photonics and Optical Communications(Beijing University of Posts and Telecommunications)
文摘We report on the fabrications and characterizations of axial and radial Ga As nanowire pn junction diode arrays.The nanowires are grown on n-doped Ga As(111)B substrates using the Au-catalyzed vapor–liquid–solid mechanism by metal–organic chemical vapor deposition(MOCVD). Diethyl–zinc and silane are used as p- and n-type dopant precursors,respectively. Both the axial and radial diodes exhibit diode-like J–V characteristics and have similar performances under forward bias. Under backward bias, the axial diode has a large leakage current, which is attributed to the bending of the pn junction interface induced by two doping mechanisms in Au-catalyzed nanowires. The low leakage current and high rectification ratio make the radial diode more promising in electrical and optoelectronic devices.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61804176,61991441,and 62004218)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB01000000)the Youth Innovation Promotion Association of Chinese Academy of Sciences.
文摘The absorption coefficient is usually considered as a constant for certain materials at the given wavelength.However,recent experiments demonstrated that the absorption coefficient could be enhanced a lot by the PN junction.The absorption coefficient varies with the thickness of the intrinsic layer in a PIN structure.Here,we interpret the anomalous absorption coefficient from the competition between recombination and drift for non-equilibrium carriers.Based on the Fokker-Planck theory,a non-equilibrium statistical model that describes the relationship between absorption coefficient and material thickness has been proposed.It could predict the experimental data well.Our results can give new ideas to design photoelectric devices.
基金supported by the National Natural Science Foundation of China (Nos.11672265,11621062,and 11202182)the Fundamental Research Funds for the Central Universities (Nos.2016QNA4026 and 2016XZZX001-05)the open foundation of Zhejiang Provincial Top Key Discipline of Mechanical Engineering
文摘We study electromechanical fields near the interface between a circular piezoelectric semiconductor cylinder and another piezoelectric semiconductor in which it is embedded. The cylinder is p-doped. The surrounding material is n-doped. The phenomenological theory of piezoelectric semiconductors consisting of the equations of piezoelectricity and the conservation of charge for holes and electrons is used. The theory is linearized for small carrier concentration perturbations. An analytical solution is obtained, showing the formation of a PN junction near the interface. Various electromechanical fields associated with the junction are calculated. The effects of a few physical parameters are examined.
基金Authors acknowledge the financial supports from the Ministry of Science and Technology of China(No.2018YFE0118300)the National Key Research and Development Program of China(No.2018YFA0703703)+1 种基金the State Key Laboratory of ASIC&System(No.2021MS003)the Science and Technology Commission of Shanghai Municipality(No.20501130100).
文摘The unique features of ambipolar two-dimensional materials open up a great opportunity to build gate-programmable devices for reconfigurable circuit applications,e.g.,PN junctions for rectifier circuits.However,current-reported rectifier circuits usually consist of one gate-programmable PN junction as the rectifier and one resistor as the load,which are not conductive to voltage output and large-scale integration.Here we propose an approach of complementary gate-programmable PN junctions to assemble reconfigurable rectifier circuit,which include two symmetric back-to-back black phosphorus(BP)/hexagonal boron nitride(h-BN)/graphene heterostructured semi-gate field-effect transistors(FETs)and perform complementary NP and PN junction like complementary metal-oxide-semiconductor(CMOS)circuit.The investigation exhibits that the circuit can effectively reconfigure the circuit with/without rectifying ability,and can process alternating current(AC)signals with the frequency prior 1 KHz and reconfiguration speed up to 25μs.We also achieve the reconfigurable rectifier circuit memory via complementary semi-floating gate FETs configuration.The complementary configuration here should be of low output impedance and low static power consumption,being beneficial for effective voltage output and large-scale integration.
基金supported by the Beijing Natural Science Foundation(No.4122080)the State Key Development Program for Basic Research of China(No.2012CB934202)the CAS Program(No.Y072051002)
文摘Pn junctions based on single crystalline tellurium supersaturated silicon were formed by ion implantation followed by pulsed laser melting(PLM).P type silicon wafers were implanted with 245 keV ^126Te^+ to a dose of 2×10^15 ions/cm^2,after a PLM process(248 nm,laser fluence of 0.30 and 0.35 J/cm^2,1-5 pulses,duration 30 ns),an n^+ type single crystalline tellurium supersaturated silicon layer with high carrier density(highest concentration 4.10×10^19 cm^3,three orders of magnitude larger than the solid solution limit) was formed,it shows high broadband optical absorption from 400 to 2500 nm.Current-voltage measurements were performed on these diodes under dark and one standard sun(AM 1.5),and good rectification characteristics were observed.For present results,the samples with 4-5 pulses PLM are best.
基金National Natural Science Foundation of China(NSFC)(61575189,61635011)
文摘The electrical nonlinearity of silicon modulators based on reversed PN junctions was found to severely limit the linearity of the modulators.This effect,however,was inadvertently neglected in previous studies.Considering the electrical nonlinearity in simulation,a 32.2 dB degradation in the CDR3(i.e.,the suppression ratio between the fundamental signal and intermodulation distortion)of the modulator was observed at a modulation speed of 12 GHz,and the spurious free dynamic range was simultaneously degraded by 17.4 dB.It was also found that the linearity of the silicon modulator could be improved by reducing the series resistance of the PN junction.The frequency dependence of the linearity due to the electrical nonlinearity was also investigated.
文摘The PN junction photodiode is fabricated with high resistivity P-type silicon ( ρ =12 000 Ω·cm).The experimental C-V curves with and without laser radiation were measured.The relative change of capacitance can be greater than 100%,which is much greater than the relative change for low resistivity P-type silicon.The relative change of capacitance with and without laser radiation at zero bias is 121.7%.