BACKGROUND Acute liver failure(ALF)has a high mortality with widespread hepatocyte death involving ferroptosis and pyroptosis.The silent information regulator sirtuin 1(SIRT1)-mediated deacetylation affects multiple b...BACKGROUND Acute liver failure(ALF)has a high mortality with widespread hepatocyte death involving ferroptosis and pyroptosis.The silent information regulator sirtuin 1(SIRT1)-mediated deacetylation affects multiple biological processes,including cellular senescence,apoptosis,sugar and lipid metabolism,oxidative stress,and inflammation.AIM To investigate the association between ferroptosis and pyroptosis and the upstream regulatory mechanisms.METHODS This study included 30 patients with ALF and 30 healthy individuals who underwent serum alanine aminotransferase(ALT)and aspartate aminotransferase(AST)testing.C57BL/6 mice were also intraperitoneally pretreated with SIRT1,p53,or glutathione peroxidase 4(GPX4)inducers and inhibitors and injected with lipopolysaccharide(LPS)/D-galactosamine(D-GalN)to induce ALF.Gasdermin D(GSDMD)^(-/-)mice were used as an experimental group.Histological changes in liver tissue were monitored by hematoxylin and eosin staining.ALT,AST,glutathione,reactive oxygen species,and iron levels were measured using commercial kits.Ferroptosis-and pyroptosis-related protein and mRNA expression was detected by western blot and quantitative real-time polymerase chain reaction.SIRT1,p53,and GSDMD were assessed by immunofluorescence analysis.RESULTS Serum AST and ALT levels were elevated in patients with ALF.SIRT1,solute carrier family 7a member 11(SLC7A11),and GPX4 protein expression was decreased and acetylated p5,p53,GSDMD,and acyl-CoA synthetase long-chain family member 4(ACSL4)protein levels were elevated in human ALF liver tissue.In the p53 and ferroptosis inhibitor-treated and GSDMD^(-/-)groups,serum interleukin(IL)-1β,tumour necrosis factor alpha,IL-6,IL-2 and C-C motif ligand 2 levels were decreased and hepatic impairment was mitigated.In mice with GSDMD knockout,p53 was reduced,GPX4 was increased,and ferroptotic events(depletion of SLC7A11,elevation of ACSL4,and iron accumulation)were detected.In vitro,knockdown of p53 and overexpression of GPX4 reduced AST and ALT levels,the cytostatic rate,and GSDMD expression,restoring SLC7A11 depletion.Moreover,SIRT1 agonist and overexpression of SIRT1 alleviated acute liver injury and decreased iron deposition compared with results in the model group,accompanied by reduced p53,GSDMD,and ACSL4,and increased SLC7A11 and GPX4.Inactivation of SIRT1 exacerbated ferroptotic and pyroptotic cell death and aggravated liver injury in LPS/D-GalNinduced in vitro and in vivo models.CONCLUSION SIRT1 activation attenuates LPS/D-GalN-induced ferroptosis and pyroptosis by inhibiting the p53/GPX4/GSDMD signaling pathway in ALF.展开更多
[Objective] This work was aimed to explore the mechanism of Hg2+ toxicity on plants.[Method]Activities of peroxidase(POD),catalase(CAT)and superoxide dismutase(SOD)were investigated in wheat(Triticum aestivum L.)seedl...[Objective] This work was aimed to explore the mechanism of Hg2+ toxicity on plants.[Method]Activities of peroxidase(POD),catalase(CAT)and superoxide dismutase(SOD)were investigated in wheat(Triticum aestivum L.)seedlings under Hg2+ stress at different concentrations.[Result]① There were no obvious effects on the growth of seedlings when the concentration of Hg2+ was lower than 0.10 mmol/L.However,toxic effects on the growth of seedling were observed when the concentration of Hg2+ was higher than 0.10 mmol/L.② Different tissues showed different resistant ability in response to Hg2+ stress.The leaves and roots of wheat seedlings were more insensitive to Hg2+ toxicity.③ CAT was more sensitive to Hg2+ stress compared to POD and SOD.[Conclusion]The toxic effect was related to the concentration of Hg2+(0.10 mmol/L).The higher concentration of Hg2+ could affect the expression of POD,CAT,and SOD isozymes in the leaves,roots of wheat seedlings and germinated seeds,which further affect the normal metabolism of membrane lipid and inhibit the growth of wheat seedlings at last.展开更多
[Objective] The research aimed to study the correlations between catalase(CAT) and ascorbate peroxidase(ASP) and the growth and development of rice roots under cadmium stress.[Method] Taking rice variety Zhonghua ...[Objective] The research aimed to study the correlations between catalase(CAT) and ascorbate peroxidase(ASP) and the growth and development of rice roots under cadmium stress.[Method] Taking rice variety Zhonghua No.11 as materials,the changes of rice seedlings under the treatment conditions of Cd,Cd+CAT inhibitor,Cd+APX inhibitor were studied.[Result] Under Cd stress,inhibition of CAT activity caused the significant inhibition on the growth of aerial parts,decreased the number of adventitious roots and lateral roots,but it can significant promote the elongation growth of adventitious roots and lateral roots.Moreover,the length of the first lateral root from root tip on the primary roots and adventitious roots was also increased than control.When APX activity was inhibited,the growth changes of rice were similar with that treated by CAT inhibitor.[Conclusion] CAT and APX may play important roles in the regulation of rice root system growth in both non-stress and Cd-stressed rice展开更多
[Objective] This study was conducted to investigate the regulation of heat shock factor AtHsfA1a on ascorbate peroxidase under heat stress in Arabidopsis thaliana. [Method] After heat stress treatment on transgenetic ...[Objective] This study was conducted to investigate the regulation of heat shock factor AtHsfA1a on ascorbate peroxidase under heat stress in Arabidopsis thaliana. [Method] After heat stress treatment on transgenetic A. thaliana with silenced endogenetic AtHsfA1a gene and wild A. thaliana plants as materials, the change in activity of APX enzyme was analyzed by spectrophotometry, the expression level of APX gene was investigated by real-time fluorescent quantitative PCR, and the binding condition of AtHsfAla with the promoter region of APX gene was analyzed by chromatin immunoprecipitation assay. [Result] The activity and mRNA level of APX in plants with silenced endogenetic AtHsfAla gene were higher than those in wild plants. Fragments of the promoter region of APX gene were not screened from the plants with silenced endogenetic AtHsfA1a gene, but found in wild plants. [Conclusion] This study provides a theoretical basis for the understanding of the important role of AtHsfAla in resistance to stress in plant, and is of great significance to the revealing of mechanism of resistance to stress in plant.展开更多
Rhizopus rot of peach fruits could be significantly suppressed by Pichia membranefaciens. Polyphenol oxidase (PPO), peroxidase (POD) and phenylalanine ammonium-lyase (PAL) activities induced by inoculation with P. mem...Rhizopus rot of peach fruits could be significantly suppressed by Pichia membranefaciens. Polyphenol oxidase (PPO), peroxidase (POD) and phenylalanine ammonium-lyase (PAL) activities induced by inoculation with P. membrane faciens or R. stolonifer were studied in postharvest peach fruits. The activities of PPO and PAL in peaches increased significantly after being inoculated with P. membrane faciens + R. stolonifer by 24 h, the activities maintained at a high level throughout the experiment. Under the condition of infected with R. stolonifer alone, activity of PPO and PAL could also increased, but the levels were lower than those treated with P. membrane faciens+ R. stolonifer. However, fruits inoculaed with P. membrane-faciens + R. stolonifer or R. stolonifer alone did not stimulated POD activity. The results suggest that the activation of these defense enzymes is involved in the action of P. membrane faciens against R. stolonifer.展开更多
The activity of horseradish peroxidase at b-cyclodextrin polymer was imaged by scanning electrochemical microscopy using 3, 3', 5, 5'-tetramethylbenzide and H2O2 as the substrates.
The immobilized technique of manganese peroxidase(MnP) in gelatin-containing microemulsion-based gels and the effects of storage time and reuse times on its catalytic activity were studied. The results show that the M...The immobilized technique of manganese peroxidase(MnP) in gelatin-containing microemulsion-based gels and the effects of storage time and reuse times on its catalytic activity were studied. The results show that the MnP immobilized together with Mn 2+ and H_2O_2 could effectively oxidize syringaldazine in n-heptane. The immobilized MnP still had a high catalytic activity after one-month storage under a freezing condition. The reuse times have a relation to the amount of the immobilized H_2O_2. When the amount of the immobilized H_2O_2 is sufficient, the microemulsion-based gels containing MnP could be used many times.展开更多
In this study, the activities of phenylalanine ammonia lyase (PAL), polyphenoloxidase (PPO), and peroxidase (POD) were assayed in cucumber seedlings (Cucumis sativus L.) at 0, 6, 12, 24, 48, 72, and 96 h after...In this study, the activities of phenylalanine ammonia lyase (PAL), polyphenoloxidase (PPO), and peroxidase (POD) were assayed in cucumber seedlings (Cucumis sativus L.) at 0, 6, 12, 24, 48, 72, and 96 h after they were infested by Bemisia tabaci (Gennadius) using spectrophotometric analysis. The results indicated that herbivore infestation increased the activities of PAL, PPO, and POD. The enzymes showed different activity levels at different times after the infestation. The PAL activity reached the first high peak by 23.1% at 6 h and the highest peak by 29.1% at 48 h compared to the control. The PPO activity reached the first high peak by 22.7% at 6 h and the highest peak by 52.6% at 24 h, and the POD activity reached the highest peak by 213.2% at 6 h and another higher peak value by 135.2% at 96 h. The results suggest that the enhanced activities of the enzymes may contribute to bioprotection of cucumber plants against B. tabaci infestation.展开更多
Catalase (CAT) and selenium-dependent glutathione peroxidase (Se-GPx) play a vital role in protecting organisms against various oxidative stresses by eliminating H202, The objective of this paper is to evaluate th...Catalase (CAT) and selenium-dependent glutathione peroxidase (Se-GPx) play a vital role in protecting organisms against various oxidative stresses by eliminating H202, The objective of this paper is to evaluate the roles of these antioxidant molecules in the ridgetail white prawn Exopalaemon carinicauda in response to low salinity stress. A complementary DNA (cDNA) containing the complete coding sequence of CAT was cloned from the hepatopancreas using reverse-transcription polymerase chain reaction (RT-PCR) and rapid amplification of cDNA ends. The full-length cDNA of CAT (2 649 bp) contains a 5'-untranslated region (UTR) of 78 bp, a 3'- UTR of 1 017 bp, with a poly (A) tail, and an open reading frame of 1 554 bp encoding a 517-amino-acid polypeptide with predicted molecular mass of 58.46 kDa and estimated isoelectric point of 6.64. This CAT sequence contained the proximal active site signature (60FDRERIPERWHAKGAG76), proximal heme-ligand signature sequence (350RLFSYPDTH358) and three catalytic amino acid residues (His71, Asn144 and Tyr354). Sequence comparison showed that the CAT deduced amino acid sequence of E. carinicauda shared 68%-92% of identities with those of other species. Quantitative real-time PCR analysis revealed that CAT mRNA was widely expressed in the hepatopancreas (highest), hemocyte, eyestalk, heart, gill, muscle, ovary and stomach. Under low salinity stress, CAT and GPx mRNA expression levels both in the gill and hepatopancreas increased significantly at the first 48 h and 6 h respectively, indicating a tissue- and time-dependent antioxidant response in E. carinicauda. All these results indicate that E. carinicauda CAT is a member of the CAT family and might be involved in the acute response against low salinity stress.展开更多
The lipH2 gene, encoding the expression of lignin peroxidase, was cloned from Phanerochaete chrysosporium BKM-F-1767 and expressed in Pichia pastoris X-33, a yeast. The cDNA of LiPH2 was generated from total RNA extra...The lipH2 gene, encoding the expression of lignin peroxidase, was cloned from Phanerochaete chrysosporium BKM-F-1767 and expressed in Pichia pastoris X-33, a yeast. The cDNA of LiPH2 was generated from total RNA extracted from P chrysosporium by PCR with primers that do not contain a P. chrysosporium lignin peroxidase secretion signal. The gene was then successfully inserted into the expression vector pPICZα, and resulted in the recombinant vector pPICZα-lipH2. The transformation was conducted in two ways. One was using the wild Pichia pastoris as the recipients, which results in the recombinant P. pastoris with single or low lipH2 gene copy. The second was using P. pastoris and single or low lipH2 gene copy as the recipients, which results in the recombinant P. pastoris with multi-copies of lipH2 genes. This study firstly expressed the gene lipH2 in P. pastoris and achieved the successful expression of the lipH2 depending upon the generation of a recombinant strain that contained multiple copies. The lignin peroxidase activity reached a maximum of 15 U/L after 12 h induction.展开更多
Alfalfa (Medicago sativa L.) is an important forage crop in the world and it is of great signiifcance for the improvement of its salt tolerance. To improve salt tolerance in alfalfa, a rice ascorbate peroxidase gene...Alfalfa (Medicago sativa L.) is an important forage crop in the world and it is of great signiifcance for the improvement of its salt tolerance. To improve salt tolerance in alfalfa, a rice ascorbate peroxidase gene (OsAPX2) was introduced into alfalfa using Agrobacterium tumefaciens-mediated transformation with marker gene bar. The different T-DNA insertions in T1 transgenic alfalfa were identiifed by Southern hybridization. Three independent T2 transgenic lines were selected for stress analysis and the results showed that all of them were salt tolerant compared with wild-type plants. The transgenic plants had low levels of H2O2, malondialdehyde and relative electrical conductivity under salt and drought stresses. Moreover, the contents of chlorophyll and proline, and APX activity were high in transgenic plants under salt and drought stresses. Taken together, the overexpression of OsAPX2 enhances salt tolerance in alfalfa through scavenging reactive oxygen species.展开更多
Our previous studies demonstrated that Ce^4+could induce reactive oxygen species (ROS) burst as a signal to promote pacilitaxel biosynthesis in suspension cultured Taxus cuspidate cells. To further understand the m...Our previous studies demonstrated that Ce^4+could induce reactive oxygen species (ROS) burst as a signal to promote pacilitaxel biosynthesis in suspension cultured Taxus cuspidate cells. To further understand the mechanism of cerium ions inducing ROS burst, circular dichroism (CD), synchronous fluorescence, and electron paramagnetic resonance (EPR) were used to detect them inducing conformational change of horseradish peroxidase (HRP). Horseradish peroxidase activity was reduced by 78% by 0.1 mmol/L Ce^4+, whereas it was only reduced by 28% by 0.1 mmol/L Ce^3+. Circular dichroism spectra showed that the percentage of transition from helical content and other structure to β strands and flturns was 23.1 when induced by Ce^4+, whereas it was only 13.2 when induced by Ce^3+. In synchronous fluorescence spectra, Ce^4+ led to red shift and intensity-elevation of tryptophan fluorescence emission maximum, whereas in the case of Ce^3+, the results were a contrast to the above. Furthermore, g factor (gx and gy) in electron paramagnetic resonance (EPR) induced by Ce^4+ and Ce^3+ was significantly different. These results indicated that the different valence of cerium ion induced various conformations of HRP, and Ce^4+ was more effective than Ce^3+. This suggested that Ce^4+ affected the burst of ROS through changing the conformation of oxidoreductase.展开更多
Superoxide dismutase (SOD) and ascorbate peroxidase (APX) play central roles in the pathway for scavenging reactive oxygen species in plants, thereby contributing to the tolerance against abiotic stress. Here we repor...Superoxide dismutase (SOD) and ascorbate peroxidase (APX) play central roles in the pathway for scavenging reactive oxygen species in plants, thereby contributing to the tolerance against abiotic stress. Here we report the responses of cytosolic SOD (cSOD; sodCc1 and sodCc2) and cytosolic APX (cAPX; OsAPX1 and OsAPX2) genes to oxidative and abiotic stress in rice. RNA blot analyses revealed that methyl viologen treatment caused a more prominent induction of cAPXs compared with cSODs, and hydrogen peroxide treatment induced the expression of cAPXs whereas cSODs were not affected. These results suggest that cAPXs play more important roles in defense against oxidative stress compared with cSODs. It is noted that cSODs and cAPXs showed coordinate response to abscisic acid treatment which induced both sodCc1 and OsAPX2. However, cSODs and cAPXs responded differentially to drought, salt and chilling stress, which indicates that cSOD and cAPX genes are expressed differentially in response to oxidative and abiotic stress in rice.展开更多
Aim: To study the secretory activity and androgen regulation of glutathione peroxidase (GPx) in epithelial cell cultures from human epididymis. Methods: Tissue was obtained from patients undergoing therapeutic orchide...Aim: To study the secretory activity and androgen regulation of glutathione peroxidase (GPx) in epithelial cell cultures from human epididymis. Methods: Tissue was obtained from patients undergoing therapeutic orchidectomy for prostatic cancer. Epithelial cell cultures were obtained from the caput, corpus and cauda epididymides. Enzymatic activity was measured in conditioned media by colorimetric methods in absence or presence of 1, 10 or 100 nrnoI.L^(-1) testosterone. The effect of 1 μmol.L^(-1) flutamide was also evaluated. Results: GPx activity was higher in cultures from corpus and cauda than caput epididymidis. The presence of different concentrations of testosterone increase enzyme activity in cell cultures from all epididymal regions. Addition of flutamide reverses the androgen dependent increase of GPx activity. Conclusion: GPx activity is secreted from human epididymal cells in a region dependent manner and is regulated by androgens.展开更多
Objective To investigate the possible effect of artesunate (ART) on schistosome thioredoxin glutathione reductase (TGR) and cytochrome c peroxidase (CcP) in Schistosoma mansoni-infected mice. Methods A total of ...Objective To investigate the possible effect of artesunate (ART) on schistosome thioredoxin glutathione reductase (TGR) and cytochrome c peroxidase (CcP) in Schistosoma mansoni-infected mice. Methods A total of 200 laboratory bred male Swiss albino mice were divided into 4 groups (50 mice in each group). Group I: infected untreated group (Control group) received a vehicle of 1% sodium carbonyl methylcellulose (CMC-Na); Group II: infected then treated with artesunate; Group III infected then treated with praziquantel, and group IV: infected then treated with artesunate then praziquantel. Adult S. mansoni worms were collected by Animal Perfusion Method, tissue egg counted, TGR, and CcP mRNA Expression were estimated of in $. mansoni adult worms by semi-quantitative rt-PCR. Results Semi-quantitative rt-PCR values revealed that treatment with artesunate caused significant decrease in expression of schistosome TGR and CcP in comparison to the untreated group. In contrast, the treatment with praziquantel did not cause significant change in expression of these genes. The results showed more reduction in total worm and female worm count in combined ART-PZQ treated group than in monotherapy treated groups by either ART or PZO, Moreover, complete disappearance (100%) of tissue eggs was recorded in ART-PZQ treated group with a respective reduction rate of 95.9% and 68.4% in ART- and PZQ-treated groups. Conclusion The current study elucidated for the first time that anti-schistosomal mechanisms of artesunate is mediated via reduction in expression of schistosome TGR and CcP. Linking these findings, addition of artesunate to praziquantel could achieve complete cure outcome in treatment of schistosomiasis.展开更多
Manganese peroxidases (MnPs) are interesting enzymes in protein engineering, aimed at maximizing industrial bioprocesses such as lignin degradation and biofuel production. cDNA of the secreted short-type of MnP from P...Manganese peroxidases (MnPs) are interesting enzymes in protein engineering, aimed at maximizing industrial bioprocesses such as lignin degradation and biofuel production. cDNA of the secreted short-type of MnP from Phlebia radiata (Pr-MnP3) has been successfully engineered and amplified by polymerase chain reaction (PCR). Five mutant genes (E40H, E44H, E40H/E44H, D186H and D186N) of recombinant Phlebia radiata MnP3 (rPr-MnP3) were generated. The wild-type and the mutant genes were expressed in Escherichia coli (W3110 strain) and the resultant body proteins were lysed, purified and refolded into active enzymes. 6% - 7% recovery of pure and fully active rPr-MnP3 for wild-type and mutants were obtained and the availability of rPr-MnP3 enzymes will greatly facilitate its structure-function relationships studies. rPr-MnP3 mass was characterised using SDS-PAGE and MALDI-TOF mass spectrometry. Molecular weight of both the wild-type and mutant rPr-MnP3 enzymes was approximately 36 kDa. This describes the spectral characterization of the wild-type and mutant rPr-MnP3 enzymes with are very close similarities;substantially high spin haem enzymes. Therefore we report the engineering, cloning, expression, refolding/activation of MnP3 genes and preliminary characterization of the wild-type and mutant Phlebia radiata MnP3 enzymes.展开更多
基金Supported by National Natural Science Foundation of China,No.82060123Doctoral Start-up Fund of Affiliated Hospital of Guizhou Medical University,No.gysybsky-2021-28+1 种基金Fund Project of Guizhou Provincial Science and Technology Department,No.[2020]1Y299Guizhou Provincial Health Commission,No.gzwjk2019-1-082。
文摘BACKGROUND Acute liver failure(ALF)has a high mortality with widespread hepatocyte death involving ferroptosis and pyroptosis.The silent information regulator sirtuin 1(SIRT1)-mediated deacetylation affects multiple biological processes,including cellular senescence,apoptosis,sugar and lipid metabolism,oxidative stress,and inflammation.AIM To investigate the association between ferroptosis and pyroptosis and the upstream regulatory mechanisms.METHODS This study included 30 patients with ALF and 30 healthy individuals who underwent serum alanine aminotransferase(ALT)and aspartate aminotransferase(AST)testing.C57BL/6 mice were also intraperitoneally pretreated with SIRT1,p53,or glutathione peroxidase 4(GPX4)inducers and inhibitors and injected with lipopolysaccharide(LPS)/D-galactosamine(D-GalN)to induce ALF.Gasdermin D(GSDMD)^(-/-)mice were used as an experimental group.Histological changes in liver tissue were monitored by hematoxylin and eosin staining.ALT,AST,glutathione,reactive oxygen species,and iron levels were measured using commercial kits.Ferroptosis-and pyroptosis-related protein and mRNA expression was detected by western blot and quantitative real-time polymerase chain reaction.SIRT1,p53,and GSDMD were assessed by immunofluorescence analysis.RESULTS Serum AST and ALT levels were elevated in patients with ALF.SIRT1,solute carrier family 7a member 11(SLC7A11),and GPX4 protein expression was decreased and acetylated p5,p53,GSDMD,and acyl-CoA synthetase long-chain family member 4(ACSL4)protein levels were elevated in human ALF liver tissue.In the p53 and ferroptosis inhibitor-treated and GSDMD^(-/-)groups,serum interleukin(IL)-1β,tumour necrosis factor alpha,IL-6,IL-2 and C-C motif ligand 2 levels were decreased and hepatic impairment was mitigated.In mice with GSDMD knockout,p53 was reduced,GPX4 was increased,and ferroptotic events(depletion of SLC7A11,elevation of ACSL4,and iron accumulation)were detected.In vitro,knockdown of p53 and overexpression of GPX4 reduced AST and ALT levels,the cytostatic rate,and GSDMD expression,restoring SLC7A11 depletion.Moreover,SIRT1 agonist and overexpression of SIRT1 alleviated acute liver injury and decreased iron deposition compared with results in the model group,accompanied by reduced p53,GSDMD,and ACSL4,and increased SLC7A11 and GPX4.Inactivation of SIRT1 exacerbated ferroptotic and pyroptotic cell death and aggravated liver injury in LPS/D-GalNinduced in vitro and in vivo models.CONCLUSION SIRT1 activation attenuates LPS/D-GalN-induced ferroptosis and pyroptosis by inhibiting the p53/GPX4/GSDMD signaling pathway in ALF.
文摘[Objective] This work was aimed to explore the mechanism of Hg2+ toxicity on plants.[Method]Activities of peroxidase(POD),catalase(CAT)and superoxide dismutase(SOD)were investigated in wheat(Triticum aestivum L.)seedlings under Hg2+ stress at different concentrations.[Result]① There were no obvious effects on the growth of seedlings when the concentration of Hg2+ was lower than 0.10 mmol/L.However,toxic effects on the growth of seedling were observed when the concentration of Hg2+ was higher than 0.10 mmol/L.② Different tissues showed different resistant ability in response to Hg2+ stress.The leaves and roots of wheat seedlings were more insensitive to Hg2+ toxicity.③ CAT was more sensitive to Hg2+ stress compared to POD and SOD.[Conclusion]The toxic effect was related to the concentration of Hg2+(0.10 mmol/L).The higher concentration of Hg2+ could affect the expression of POD,CAT,and SOD isozymes in the leaves,roots of wheat seedlings and germinated seeds,which further affect the normal metabolism of membrane lipid and inhibit the growth of wheat seedlings at last.
基金Supported by National Natural Science Foundation of China(30671126)~~
文摘[Objective] The research aimed to study the correlations between catalase(CAT) and ascorbate peroxidase(ASP) and the growth and development of rice roots under cadmium stress.[Method] Taking rice variety Zhonghua No.11 as materials,the changes of rice seedlings under the treatment conditions of Cd,Cd+CAT inhibitor,Cd+APX inhibitor were studied.[Result] Under Cd stress,inhibition of CAT activity caused the significant inhibition on the growth of aerial parts,decreased the number of adventitious roots and lateral roots,but it can significant promote the elongation growth of adventitious roots and lateral roots.Moreover,the length of the first lateral root from root tip on the primary roots and adventitious roots was also increased than control.When APX activity was inhibited,the growth changes of rice were similar with that treated by CAT inhibitor.[Conclusion] CAT and APX may play important roles in the regulation of rice root system growth in both non-stress and Cd-stressed rice
文摘[Objective] This study was conducted to investigate the regulation of heat shock factor AtHsfA1a on ascorbate peroxidase under heat stress in Arabidopsis thaliana. [Method] After heat stress treatment on transgenetic A. thaliana with silenced endogenetic AtHsfA1a gene and wild A. thaliana plants as materials, the change in activity of APX enzyme was analyzed by spectrophotometry, the expression level of APX gene was investigated by real-time fluorescent quantitative PCR, and the binding condition of AtHsfAla with the promoter region of APX gene was analyzed by chromatin immunoprecipitation assay. [Result] The activity and mRNA level of APX in plants with silenced endogenetic AtHsfAla gene were higher than those in wild plants. Fragments of the promoter region of APX gene were not screened from the plants with silenced endogenetic AtHsfA1a gene, but found in wild plants. [Conclusion] This study provides a theoretical basis for the understanding of the important role of AtHsfAla in resistance to stress in plant, and is of great significance to the revealing of mechanism of resistance to stress in plant.
基金the grants fromthe National Natural Science Foundation of China(NNSF-30170663) the Chinese Academy of Sciences.
文摘Rhizopus rot of peach fruits could be significantly suppressed by Pichia membranefaciens. Polyphenol oxidase (PPO), peroxidase (POD) and phenylalanine ammonium-lyase (PAL) activities induced by inoculation with P. membrane faciens or R. stolonifer were studied in postharvest peach fruits. The activities of PPO and PAL in peaches increased significantly after being inoculated with P. membrane faciens + R. stolonifer by 24 h, the activities maintained at a high level throughout the experiment. Under the condition of infected with R. stolonifer alone, activity of PPO and PAL could also increased, but the levels were lower than those treated with P. membrane faciens+ R. stolonifer. However, fruits inoculaed with P. membrane-faciens + R. stolonifer or R. stolonifer alone did not stimulated POD activity. The results suggest that the activation of these defense enzymes is involved in the action of P. membrane faciens against R. stolonifer.
文摘The activity of horseradish peroxidase at b-cyclodextrin polymer was imaged by scanning electrochemical microscopy using 3, 3', 5, 5'-tetramethylbenzide and H2O2 as the substrates.
文摘The immobilized technique of manganese peroxidase(MnP) in gelatin-containing microemulsion-based gels and the effects of storage time and reuse times on its catalytic activity were studied. The results show that the MnP immobilized together with Mn 2+ and H_2O_2 could effectively oxidize syringaldazine in n-heptane. The immobilized MnP still had a high catalytic activity after one-month storage under a freezing condition. The reuse times have a relation to the amount of the immobilized H_2O_2. When the amount of the immobilized H_2O_2 is sufficient, the microemulsion-based gels containing MnP could be used many times.
文摘In this study, the activities of phenylalanine ammonia lyase (PAL), polyphenoloxidase (PPO), and peroxidase (POD) were assayed in cucumber seedlings (Cucumis sativus L.) at 0, 6, 12, 24, 48, 72, and 96 h after they were infested by Bemisia tabaci (Gennadius) using spectrophotometric analysis. The results indicated that herbivore infestation increased the activities of PAL, PPO, and POD. The enzymes showed different activity levels at different times after the infestation. The PAL activity reached the first high peak by 23.1% at 6 h and the highest peak by 29.1% at 48 h compared to the control. The PPO activity reached the first high peak by 22.7% at 6 h and the highest peak by 52.6% at 24 h, and the POD activity reached the highest peak by 213.2% at 6 h and another higher peak value by 135.2% at 96 h. The results suggest that the enhanced activities of the enzymes may contribute to bioprotection of cucumber plants against B. tabaci infestation.
基金The Modern Agro-industry Technology Research System under contract No.CARS-47the National High-tech R&D Program(863 Program) of China under contract No.2012AA10A409+1 种基金the Special Fund for Independent Innovation of Shandong Province under contract No.2013CX80202the Special Fund for Agro-scientific Research in the Public Interest under contract No.201103034
文摘Catalase (CAT) and selenium-dependent glutathione peroxidase (Se-GPx) play a vital role in protecting organisms against various oxidative stresses by eliminating H202, The objective of this paper is to evaluate the roles of these antioxidant molecules in the ridgetail white prawn Exopalaemon carinicauda in response to low salinity stress. A complementary DNA (cDNA) containing the complete coding sequence of CAT was cloned from the hepatopancreas using reverse-transcription polymerase chain reaction (RT-PCR) and rapid amplification of cDNA ends. The full-length cDNA of CAT (2 649 bp) contains a 5'-untranslated region (UTR) of 78 bp, a 3'- UTR of 1 017 bp, with a poly (A) tail, and an open reading frame of 1 554 bp encoding a 517-amino-acid polypeptide with predicted molecular mass of 58.46 kDa and estimated isoelectric point of 6.64. This CAT sequence contained the proximal active site signature (60FDRERIPERWHAKGAG76), proximal heme-ligand signature sequence (350RLFSYPDTH358) and three catalytic amino acid residues (His71, Asn144 and Tyr354). Sequence comparison showed that the CAT deduced amino acid sequence of E. carinicauda shared 68%-92% of identities with those of other species. Quantitative real-time PCR analysis revealed that CAT mRNA was widely expressed in the hepatopancreas (highest), hemocyte, eyestalk, heart, gill, muscle, ovary and stomach. Under low salinity stress, CAT and GPx mRNA expression levels both in the gill and hepatopancreas increased significantly at the first 48 h and 6 h respectively, indicating a tissue- and time-dependent antioxidant response in E. carinicauda. All these results indicate that E. carinicauda CAT is a member of the CAT family and might be involved in the acute response against low salinity stress.
基金supported by the National Natural Science Foundation of China (No. 20577028).
文摘The lipH2 gene, encoding the expression of lignin peroxidase, was cloned from Phanerochaete chrysosporium BKM-F-1767 and expressed in Pichia pastoris X-33, a yeast. The cDNA of LiPH2 was generated from total RNA extracted from P chrysosporium by PCR with primers that do not contain a P. chrysosporium lignin peroxidase secretion signal. The gene was then successfully inserted into the expression vector pPICZα, and resulted in the recombinant vector pPICZα-lipH2. The transformation was conducted in two ways. One was using the wild Pichia pastoris as the recipients, which results in the recombinant P. pastoris with single or low lipH2 gene copy. The second was using P. pastoris and single or low lipH2 gene copy as the recipients, which results in the recombinant P. pastoris with multi-copies of lipH2 genes. This study firstly expressed the gene lipH2 in P. pastoris and achieved the successful expression of the lipH2 depending upon the generation of a recombinant strain that contained multiple copies. The lignin peroxidase activity reached a maximum of 15 U/L after 12 h induction.
基金supported by the National 973 Program of China (2014CB138700)
文摘Alfalfa (Medicago sativa L.) is an important forage crop in the world and it is of great signiifcance for the improvement of its salt tolerance. To improve salt tolerance in alfalfa, a rice ascorbate peroxidase gene (OsAPX2) was introduced into alfalfa using Agrobacterium tumefaciens-mediated transformation with marker gene bar. The different T-DNA insertions in T1 transgenic alfalfa were identiifed by Southern hybridization. Three independent T2 transgenic lines were selected for stress analysis and the results showed that all of them were salt tolerant compared with wild-type plants. The transgenic plants had low levels of H2O2, malondialdehyde and relative electrical conductivity under salt and drought stresses. Moreover, the contents of chlorophyll and proline, and APX activity were high in transgenic plants under salt and drought stresses. Taken together, the overexpression of OsAPX2 enhances salt tolerance in alfalfa through scavenging reactive oxygen species.
文摘Our previous studies demonstrated that Ce^4+could induce reactive oxygen species (ROS) burst as a signal to promote pacilitaxel biosynthesis in suspension cultured Taxus cuspidate cells. To further understand the mechanism of cerium ions inducing ROS burst, circular dichroism (CD), synchronous fluorescence, and electron paramagnetic resonance (EPR) were used to detect them inducing conformational change of horseradish peroxidase (HRP). Horseradish peroxidase activity was reduced by 78% by 0.1 mmol/L Ce^4+, whereas it was only reduced by 28% by 0.1 mmol/L Ce^3+. Circular dichroism spectra showed that the percentage of transition from helical content and other structure to β strands and flturns was 23.1 when induced by Ce^4+, whereas it was only 13.2 when induced by Ce^3+. In synchronous fluorescence spectra, Ce^4+ led to red shift and intensity-elevation of tryptophan fluorescence emission maximum, whereas in the case of Ce^3+, the results were a contrast to the above. Furthermore, g factor (gx and gy) in electron paramagnetic resonance (EPR) induced by Ce^4+ and Ce^3+ was significantly different. These results indicated that the different valence of cerium ion induced various conformations of HRP, and Ce^4+ was more effective than Ce^3+. This suggested that Ce^4+ affected the burst of ROS through changing the conformation of oxidoreductase.
基金supported by the Grants-in-Aid for Scientific Research (Grant No. 10460149 to K.T. and Grant No. 11740448 to S.M.) from the Ministry of Education, Culture, Sports, Science and Technology of Japana grant from the Rice Genome Research Program (Grant No. MP2106 to K.T.) from the Ministry of Agriculture, Forestry and Fisheries of Japan
文摘Superoxide dismutase (SOD) and ascorbate peroxidase (APX) play central roles in the pathway for scavenging reactive oxygen species in plants, thereby contributing to the tolerance against abiotic stress. Here we report the responses of cytosolic SOD (cSOD; sodCc1 and sodCc2) and cytosolic APX (cAPX; OsAPX1 and OsAPX2) genes to oxidative and abiotic stress in rice. RNA blot analyses revealed that methyl viologen treatment caused a more prominent induction of cAPXs compared with cSODs, and hydrogen peroxide treatment induced the expression of cAPXs whereas cSODs were not affected. These results suggest that cAPXs play more important roles in defense against oxidative stress compared with cSODs. It is noted that cSODs and cAPXs showed coordinate response to abscisic acid treatment which induced both sodCc1 and OsAPX2. However, cSODs and cAPXs responded differentially to drought, salt and chilling stress, which indicates that cSOD and cAPX genes are expressed differentially in response to oxidative and abiotic stress in rice.
文摘Aim: To study the secretory activity and androgen regulation of glutathione peroxidase (GPx) in epithelial cell cultures from human epididymis. Methods: Tissue was obtained from patients undergoing therapeutic orchidectomy for prostatic cancer. Epithelial cell cultures were obtained from the caput, corpus and cauda epididymides. Enzymatic activity was measured in conditioned media by colorimetric methods in absence or presence of 1, 10 or 100 nrnoI.L^(-1) testosterone. The effect of 1 μmol.L^(-1) flutamide was also evaluated. Results: GPx activity was higher in cultures from corpus and cauda than caput epididymidis. The presence of different concentrations of testosterone increase enzyme activity in cell cultures from all epididymal regions. Addition of flutamide reverses the androgen dependent increase of GPx activity. Conclusion: GPx activity is secreted from human epididymal cells in a region dependent manner and is regulated by androgens.
文摘Objective To investigate the possible effect of artesunate (ART) on schistosome thioredoxin glutathione reductase (TGR) and cytochrome c peroxidase (CcP) in Schistosoma mansoni-infected mice. Methods A total of 200 laboratory bred male Swiss albino mice were divided into 4 groups (50 mice in each group). Group I: infected untreated group (Control group) received a vehicle of 1% sodium carbonyl methylcellulose (CMC-Na); Group II: infected then treated with artesunate; Group III infected then treated with praziquantel, and group IV: infected then treated with artesunate then praziquantel. Adult S. mansoni worms were collected by Animal Perfusion Method, tissue egg counted, TGR, and CcP mRNA Expression were estimated of in $. mansoni adult worms by semi-quantitative rt-PCR. Results Semi-quantitative rt-PCR values revealed that treatment with artesunate caused significant decrease in expression of schistosome TGR and CcP in comparison to the untreated group. In contrast, the treatment with praziquantel did not cause significant change in expression of these genes. The results showed more reduction in total worm and female worm count in combined ART-PZQ treated group than in monotherapy treated groups by either ART or PZO, Moreover, complete disappearance (100%) of tissue eggs was recorded in ART-PZQ treated group with a respective reduction rate of 95.9% and 68.4% in ART- and PZQ-treated groups. Conclusion The current study elucidated for the first time that anti-schistosomal mechanisms of artesunate is mediated via reduction in expression of schistosome TGR and CcP. Linking these findings, addition of artesunate to praziquantel could achieve complete cure outcome in treatment of schistosomiasis.
文摘Manganese peroxidases (MnPs) are interesting enzymes in protein engineering, aimed at maximizing industrial bioprocesses such as lignin degradation and biofuel production. cDNA of the secreted short-type of MnP from Phlebia radiata (Pr-MnP3) has been successfully engineered and amplified by polymerase chain reaction (PCR). Five mutant genes (E40H, E44H, E40H/E44H, D186H and D186N) of recombinant Phlebia radiata MnP3 (rPr-MnP3) were generated. The wild-type and the mutant genes were expressed in Escherichia coli (W3110 strain) and the resultant body proteins were lysed, purified and refolded into active enzymes. 6% - 7% recovery of pure and fully active rPr-MnP3 for wild-type and mutants were obtained and the availability of rPr-MnP3 enzymes will greatly facilitate its structure-function relationships studies. rPr-MnP3 mass was characterised using SDS-PAGE and MALDI-TOF mass spectrometry. Molecular weight of both the wild-type and mutant rPr-MnP3 enzymes was approximately 36 kDa. This describes the spectral characterization of the wild-type and mutant rPr-MnP3 enzymes with are very close similarities;substantially high spin haem enzymes. Therefore we report the engineering, cloning, expression, refolding/activation of MnP3 genes and preliminary characterization of the wild-type and mutant Phlebia radiata MnP3 enzymes.