In this article, we introduce higher order conjugate Poisson and Poisson kernels, which are higher order analogues of the classical conjugate Poisson and Poisson kernels, as well as the polyharmonic fundamental soluti...In this article, we introduce higher order conjugate Poisson and Poisson kernels, which are higher order analogues of the classical conjugate Poisson and Poisson kernels, as well as the polyharmonic fundamental solutions, and define multi-layer potentials in terms of the Poisson field and the polyharmonic fundamental solutions, in which the former is formed by the higher order conjugate Poisson and the Poisson kernels. Then by the multi-layer potentials, we solve three classes of boundary value problems(i.e., Dirichlet, Neumann and regularity problems) with L^p boundary data for polyharmonic equations in Lipschitz domains and give integral representation(or potential) solutions of these problems.展开更多
We investigate the Liouville theorem for an integral system with Poisson kernel on the upper half space R+n,{u(x) =2/(nωn)∫?R+n(xnf(v(y)))/(|x- y|n)dy, x ∈R+n,v(y) =2/(nωn)∫R+n(xng(u(x)))/(...We investigate the Liouville theorem for an integral system with Poisson kernel on the upper half space R+n,{u(x) =2/(nωn)∫?R+n(xnf(v(y)))/(|x- y|n)dy, x ∈R+n,v(y) =2/(nωn)∫R+n(xng(u(x)))/(|x- y|n)dx, y ∈?R+n,where n 3, ωn is the volume of the unit ball in Rn. This integral system arises from the Euler-Lagrange equation corresponding to an integral inequality on the upper half space established by Hang et al.(2008).With natural structure conditions on f and g, we classify the positive solutions of the above system based on the method of moving spheres in integral form and the inequality mentioned above.展开更多
We study a prescribing involving Poisson kernel on the unit of PDE. As in Nirenberg problem, solutions. We prove existence in the functions problem of a conformally invariant integral equation ball. This integral equa...We study a prescribing involving Poisson kernel on the unit of PDE. As in Nirenberg problem, solutions. We prove existence in the functions problem of a conformally invariant integral equation ball. This integral equation is not the dual of any standard type there exists a Kazdan-Warner type obstruction to existence of antipodal symmetry functions class.展开更多
In 1965, Lu Yu-Qian discovered that the Poisson kernel of the homogenous domain S m,p,q={Z∈Cm×m, Z1∈Cm×p,Z2 ∈Cq×m|2i1( Z-Z+)-Z1Z1′-Z2′Z2】0} does not satisfy the Laplace-Beltrami equation associate...In 1965, Lu Yu-Qian discovered that the Poisson kernel of the homogenous domain S m,p,q={Z∈Cm×m, Z1∈Cm×p,Z2 ∈Cq×m|2i1( Z-Z+)-Z1Z1′-Z2′Z2】0} does not satisfy the Laplace-Beltrami equation associated with the Bergman metric when S m,p,q is not symmetric. However the map T0:Z→Z, Z1→Z1 , Z2→Z2 transforms S m,p,q into a domain S I (m, m + p + q) which can be mapped by the Cayley transformation into the classical domains R I (m, m + p + q). The pull back of the Bergman metric of R I (m, m + p + q) to S m,p,q is a Riemann metric ds 2 which is not a Khler metric and even not a Hermitian metric in general. It is proved that the Laplace-Beltrami operator associated with the metric ds 2 when it acts on the Poisson kernel of S m,p,q equals 0. Consequently, the Cauchy formula of S m,p,q can be obtained from the Poisson formula.展开更多
The purpose of this paper is five-fold. First, we employ the harmonic analysis techniques to establish the following Hardy–Littlewood–Sobolev inequality with the fractional Poisson kernel on the upper half space ■ ...The purpose of this paper is five-fold. First, we employ the harmonic analysis techniques to establish the following Hardy–Littlewood–Sobolev inequality with the fractional Poisson kernel on the upper half space ■ where f ∈ L^p(?R_+~n), g ∈ Lq(R_+~n) and p, q'∈(1, +∞), 2 ≤α < n satisfying (n-1)/np+1/q'+(2-α)/n= 1.Second, we utilize the technique combining the rearrangement inequality and Lorentz interpolation to show the attainability of best constant C_(n,α,p,q'). Third, we apply the regularity lifting method to obtain the smoothness of extremal functions of the above inequality under weaker assumptions. Furthermore,in light of the Pohozaev identity, we establish the sufficient and necessary condition for the existence of positive solutions to the integral system of the Euler–Lagrange equations associated with the extremals of the fractional Poisson kernel. Finally, by using the method of moving plane in integral forms, we prove that extremals of the Hardy–Littlewood–Sobolev inequality with the fractional Poisson kernel must be radially symmetric and decreasing about some point ξ_0 ∈ ?R_+~n. Our results proved in this paper play a crucial role in establishing the Stein–Weiss inequalities with the Poisson kernel in our subsequent paper.展开更多
In this paper we obtain the Plancherel formula for the spaces of L2-sections of the line bundles over the pseudo-Riemannian symmetric space G/H where G=SL(n + 1, R) and H=S(GL(1, R)×GL(n, R)). The Planch...In this paper we obtain the Plancherel formula for the spaces of L2-sections of the line bundles over the pseudo-Riemannian symmetric space G/H where G=SL(n + 1, R) and H=S(GL(1, R)×GL(n, R)). The Plancherel formula is given in an explicit form by means of spherical distributions associated with the character χλ of the subgroup H. We follow the method of Faraut, Kosters and van Dijk.展开更多
基金National Natural Science Foundation of China (Grant No. 11401254)。
文摘In this article, we introduce higher order conjugate Poisson and Poisson kernels, which are higher order analogues of the classical conjugate Poisson and Poisson kernels, as well as the polyharmonic fundamental solutions, and define multi-layer potentials in terms of the Poisson field and the polyharmonic fundamental solutions, in which the former is formed by the higher order conjugate Poisson and the Poisson kernels. Then by the multi-layer potentials, we solve three classes of boundary value problems(i.e., Dirichlet, Neumann and regularity problems) with L^p boundary data for polyharmonic equations in Lipschitz domains and give integral representation(or potential) solutions of these problems.
基金supported by National Natural Science Foundation of China (Grant No. 11571268)Natural Science Basic Research Plan in Shaanxi Province of China (Grant No. 2014JM1021)
文摘We investigate the Liouville theorem for an integral system with Poisson kernel on the upper half space R+n,{u(x) =2/(nωn)∫?R+n(xnf(v(y)))/(|x- y|n)dy, x ∈R+n,v(y) =2/(nωn)∫R+n(xng(u(x)))/(|x- y|n)dx, y ∈?R+n,where n 3, ωn is the volume of the unit ball in Rn. This integral system arises from the Euler-Lagrange equation corresponding to an integral inequality on the upper half space established by Hang et al.(2008).With natural structure conditions on f and g, we classify the positive solutions of the above system based on the method of moving spheres in integral form and the inequality mentioned above.
基金Supported in part by NSFC(Grant Nos.11501034 and 11571019)a key project of NSFC(Grant No.11631002)
文摘We study a prescribing involving Poisson kernel on the unit of PDE. As in Nirenberg problem, solutions. We prove existence in the functions problem of a conformally invariant integral equation ball. This integral equation is not the dual of any standard type there exists a Kazdan-Warner type obstruction to existence of antipodal symmetry functions class.
基金supported by National Natural Science Foundation of China (Grant Nos. 10671194 and 10731080/A01010501)
文摘In 1965, Lu Yu-Qian discovered that the Poisson kernel of the homogenous domain S m,p,q={Z∈Cm×m, Z1∈Cm×p,Z2 ∈Cq×m|2i1( Z-Z+)-Z1Z1′-Z2′Z2】0} does not satisfy the Laplace-Beltrami equation associated with the Bergman metric when S m,p,q is not symmetric. However the map T0:Z→Z, Z1→Z1 , Z2→Z2 transforms S m,p,q into a domain S I (m, m + p + q) which can be mapped by the Cayley transformation into the classical domains R I (m, m + p + q). The pull back of the Bergman metric of R I (m, m + p + q) to S m,p,q is a Riemann metric ds 2 which is not a Khler metric and even not a Hermitian metric in general. It is proved that the Laplace-Beltrami operator associated with the metric ds 2 when it acts on the Poisson kernel of S m,p,q equals 0. Consequently, the Cauchy formula of S m,p,q can be obtained from the Poisson formula.
基金partly supported by a US NSF granta Simons Collaboration grant from the Simons Foundation
文摘The purpose of this paper is five-fold. First, we employ the harmonic analysis techniques to establish the following Hardy–Littlewood–Sobolev inequality with the fractional Poisson kernel on the upper half space ■ where f ∈ L^p(?R_+~n), g ∈ Lq(R_+~n) and p, q'∈(1, +∞), 2 ≤α < n satisfying (n-1)/np+1/q'+(2-α)/n= 1.Second, we utilize the technique combining the rearrangement inequality and Lorentz interpolation to show the attainability of best constant C_(n,α,p,q'). Third, we apply the regularity lifting method to obtain the smoothness of extremal functions of the above inequality under weaker assumptions. Furthermore,in light of the Pohozaev identity, we establish the sufficient and necessary condition for the existence of positive solutions to the integral system of the Euler–Lagrange equations associated with the extremals of the fractional Poisson kernel. Finally, by using the method of moving plane in integral forms, we prove that extremals of the Hardy–Littlewood–Sobolev inequality with the fractional Poisson kernel must be radially symmetric and decreasing about some point ξ_0 ∈ ?R_+~n. Our results proved in this paper play a crucial role in establishing the Stein–Weiss inequalities with the Poisson kernel in our subsequent paper.
基金supported by the National Natural Science Foundation of China(11201346)
文摘In this paper we obtain the Plancherel formula for the spaces of L2-sections of the line bundles over the pseudo-Riemannian symmetric space G/H where G=SL(n + 1, R) and H=S(GL(1, R)×GL(n, R)). The Plancherel formula is given in an explicit form by means of spherical distributions associated with the character χλ of the subgroup H. We follow the method of Faraut, Kosters and van Dijk.